【題目】若定義在上的函數(shù)滿足,且是奇函數(shù),現(xiàn)給出下列4個結(jié)論:①是周期為4的周期函數(shù);

的圖象關(guān)于點對稱;

是偶函數(shù);

的圖象經(jīng)過點,其中正確結(jié)論的序號是__________(請?zhí)钌纤姓_的序號).

【答案】①②③

【解析】

求出函數(shù)f(x)的周期,判斷出函數(shù)的奇偶性,從而求出答案即可.

由f(x+2)=﹣f(x)可知函數(shù)周期為4,

由f(x+1)是奇函數(shù)關(guān)于原點對稱,

可知f(x)關(guān)于(1,0)對稱,即f(1+x)=﹣f(1﹣x),

f(﹣x)=﹣f(﹣x+2)=﹣f(1+1﹣x)=f(1﹣(1﹣x))=f(x),

所以函數(shù)為偶函數(shù),f(﹣2)=﹣f(﹣2+2)=﹣f(0),無法判斷其值.

綜上,正確的序號是:①②③.

故答案為:①②③.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等比數(shù)列中,

)求數(shù)列的通項公式;

)若數(shù)列的公比大于,且,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】A(0,2)是圓x2y216內(nèi)的定點,B,C是這個圓上的兩個動點,若BACA,求BC中點M的軌跡方程,并說明它的軌跡是什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4﹣4:坐標(biāo)系與參數(shù)方程.
極坐標(biāo)系與直角坐標(biāo)系xoy有相同的長度單位,以原點為極點,以x軸正半軸為極軸,已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為 (t為參數(shù),0≤α<π),射線θ=φ,θ=φ+ ,θ=φ﹣ 與曲線C1交于(不包括極點O)三點A、B、C.
(1)求證:|OB|+|OC|= |OA|;
(2)當(dāng)φ= 時,B,C兩點在曲線C2上,求m與α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行六面體ABCD-A1B1C1D1中,E,F,G分別是A1D1,D1D,D1C1的中點.

(1)求證:EG∥AC;

(2)求證:平面EFG平面AB1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知首項為﹣6的等差數(shù)列{an}的前7項和為0,等比數(shù)列{bn}滿足b3=a7 , |b3﹣b4|=6.
(1)求數(shù)列{bn}的通項公式;
(2)是否存在正整數(shù)k,使得數(shù)列{ }的前k項和大于 ?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|3x﹣ |.
(1)求不等式f(x)<1的解集;
(2)若實數(shù)a,b,c滿足a>0,b>0,c>0且a+b+c= .求證: + +

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐A-BCDE,底面BCDE是等腰梯形,BC DE, DCB=45°,OBC中點,AO=,BC=6,AD=AE=2CD=.

(1)證明:AO⊥平面BCD;

(2)求二面角A-CD-B的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD-A1B1C1D中,S是B1D1的中點,E、F、G分別是BC、CD和SC的中點.求證:

1直線EG平面BDD1B1;

2平面EFG平面BDD1B1

查看答案和解析>>

同步練習(xí)冊答案