【題目】已知αβ是不同的平面,l、mn是不同的直線,P為空間中一點(diǎn).若αβl,mα、nβ、mnP,則點(diǎn)P與直線l的位置關(guān)系用符號(hào)表示為___.

【答案】Pl.

【解析】 因?yàn)?/span>mα,nβmnP,所以PαPβ.又αβl,所以點(diǎn)P在直線l上,所以Pl.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若當(dāng)時(shí),函數(shù)的圖象恒在函數(shù)的圖象的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列說法,正確的個(gè)數(shù)是

若兩直線的傾斜角相等,則它們的斜率也一定相等;

一條直線的傾斜角為30°;

傾斜角為0°的直線只有一條;

直線的傾斜角α的集合{α|0°≤α<180°}與直線集合建立了一一對應(yīng)關(guān)系.

A.0 B.1

C.2 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn)在直線上運(yùn)動(dòng),過點(diǎn)垂直的直線和線段的垂直平分線相交于點(diǎn)。

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)過(1)中軌跡上的點(diǎn)作兩條直線分別與軌跡相交于,兩點(diǎn)。試探究:當(dāng)直線的斜率存在且傾斜角互補(bǔ)時(shí),直線的斜率是否為定值?若是,求出這個(gè)定值;若不是,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國乒乓球隊(duì)備戰(zhàn)里約奧運(yùn)會(huì)熱身賽選拔賽于2016年7月14日在山東威海開賽.種子選手,三位非種子選手分別進(jìn)行一場對抗賽,按以往多次比賽的統(tǒng)計(jì),獲勝的概率分別為,,且各場比賽互不影響.

(1)若至少獲勝兩場的概率大于,入選征戰(zhàn)里約奧運(yùn)會(huì)的最終大名單,否則不予入選,問是否會(huì)入選最終的大名單?

(2)求獲勝場數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知分別為橢圓的上、下焦點(diǎn),是拋物線的焦點(diǎn),點(diǎn)在第二象限的交點(diǎn),且.

(1)求橢圓的方程;

(2)與圓相切的直線交橢圓,若橢圓上一點(diǎn)滿足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點(diǎn),且焦點(diǎn)為,直線與拋物線相交于兩點(diǎn).

(1)求拋物線的方程,并求其準(zhǔn)線方程;

(2)若直線經(jīng)過拋物線的焦點(diǎn),當(dāng)線段的長等于5時(shí),求直線方程.

(3)若,證明直線必過一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】因?yàn)樗倪呅?/span>ABCD是矩形,所以四邊形ABCD的對角線相等.”補(bǔ)充以上推理的大前提(

A. 正方形都是對角線相等的四邊形 B. 矩形都是對角線相等的四邊形

C. 等腰梯形都是對角線相等的四邊形 D. 矩形都是對邊平行且相等的四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三條直線兩兩相交,可確定的平面?zhèn)數(shù)是( )

A. 1 B. 13 C. 12 D. 3

查看答案和解析>>

同步練習(xí)冊答案