A. | (-∞,$\frac{1}{2}$) | B. | (-∞,$\frac{1}{2}$)∪($\frac{3}{2}$,+∞) | C. | ($\frac{1}{2}$,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,+∞) |
分析 根據(jù)函數(shù)的對稱性可知f(x)在(0,+∞)遞減,故只需令2|a-1|<$\sqrt{2}$即可.
解答 解:∵f(x)是定義在R上的偶函數(shù),且在區(qū)間(-∞,0)上單調(diào)遞增,
∴f(x)在(0,+∞)上單調(diào)遞減.
∵2|a-1|>0,f(-$\sqrt{2}$)=f($\sqrt{2}$),
∴2|a-1|<$\sqrt{2}$=2${\;}^{\frac{1}{2}}$.
∴|a-1|$<\frac{1}{2}$,
解得$\frac{1}{2}<a<\frac{3}{2}$.
故選:C.
點評 本題考查了函數(shù)的單調(diào)性,奇偶性的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 5 | C. | 4 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com