精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點,

求橢圓C的標準方程;

過橢圓C的右焦點作直線l交橢圓C于A、B兩點,交y軸于M點,若為定值.

【答案】;證明見解析.

【解析】

試題分析:要求橢圓標準方程,要有兩個獨立的條件,本題中拋物線的焦點是,這樣有,另外由離心率,就可求得,得標準方程;

本題是解析幾何中定值問題,設出直線方程為,同時設交點為,由直線方程與橢圓方程聯立后消元后可得,利用已知求得表示,然后計算可證得結論.

試題解析:I設橢圓C的方程為,

因為拋物線的焦點坐標是 所以由題意知b = 1.

又有

∴橢圓C的方程為

II方法一:設A、B、M點的坐標分別為

易知右焦點的坐標為2,0

將A點坐標代入到橢圓方程中,得

去分母整理得

方法二:設A、B、M點的坐標分別為

又易知F點的坐標為2,0

顯然直線l存在的斜率,設直線l的斜率為k,則直線l的方程是

將直線l的方程代入到橢圓C的方程中,消去y并整理得

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,有兩條相交成60°角的直線xx,yy,交點是O,甲、乙分別在OxOy上,起初甲離O點3 km,乙離O點1 km,后來兩人同時用每小時4 km的速度,甲沿xx方向,乙沿yy方向步行,問:

(1)用包含t的式子表示t小時后兩人的距離;

(2)什么時候兩人的距離最短?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組有3名男生和2名女生,從中任選2名同學去參加演講比賽,事件至少1名女生與事件全是男生( )

A.是互斥事件,不是對立事件

B.是對立事件,不是互斥事件

C.既是互斥事件,也是對立事件

D.既不是互斥事件也不是對立事件

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】機床廠今年年初用98萬元購進一臺數控機床,并立即投入生產使用,計劃第一年維修、保養(yǎng)費用12萬元,從第二年開始,每年所需維修、保養(yǎng)費用比上一年增加4萬元,該機床使用后,每年的總收入為50萬元,設使用x年后數控機床的盈利額為y萬元.

()寫出y與x之間的函數關系式;

()從第幾年開始,該機床開始盈利(盈利額為正值);

()使用若干年后,對機床的處理方案有兩種:

(1)當年平均盈利額達到最大值時,以30萬元價格處理該機床;

(2)當盈利額達到最大值時,以12萬元價格處理該機床.

請你研究一下哪種方案處理較為合理?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為及時了解適齡公務員對開放生育二胎政策的態(tài)度,某部門隨機調查了90位30歲到40歲的公務員,得到情況如下表:

1判斷是否有99%以上的把握認為“生二胎意愿與性別有關”,并說明理由;

2現把以上頻率當作概率,若從社會上隨機獨立抽取三位30歲到40歲的男公務員訪問,求這三人中至少有一人有意愿生二胎的概率.

3已知15位有意愿生二胎的女性公務員中有兩位來自省婦聯,該部門打算從這15位有意愿生二胎的女性公務員中隨機邀請兩位來參加座談,設邀請的2人中來自省女聯的人數為,求布列及數學期望.

男性公務員

女性公務員

總計

有意愿生二胎

30

15

45

無意愿生二胎

20

25

45

總計

50

40

90

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,有一個正三棱錐的零件,P是側面ACD上的一點.

過點P作一個與棱AB垂直的截面,怎樣畫法?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知矩形,將 沿矩形的對角線 所在的直線進行翻折,在翻折過程中 (  )

A. 存在某個位置,使得直線與直線垂直

B. 存在某個位置,使得直線與直線垂直

C. 存在某個位置,使得直線與直線垂直

D. 對任意位置,三對直線“”,“”,“”均不垂直

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx=ax2-2x+1.

1,試討論函數fx的單調性;

2≤a≤1,且fx在[1,3]上的最大值為Ma,最小值為Na,令ga=Ma-Na,求ga的表達式;

32的條件下,求ga的最.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為了了解全校學生的上網情況,在全校采用隨機抽樣的方法抽取了40名學生其中男女生人數恰好各占一半進行問卷調查,并進行了統計,按男女分為兩組,再將每組學生的月上網次數分為5組:,,,,得到如圖所示的頻率分布直方圖:

(1)寫出的值;

(2)求抽取的40名學生中月上網次數不少于15次的學生人數;

在抽取的40名學生中,從月上網次數不少于20次的學生中隨機抽取2人 ,求至少抽到1名女生的概率.

查看答案和解析>>

同步練習冊答案