16.已知cosα=-$\frac{1}{3}$,且α是第三象限角,若sin(α+β)=1,求cos(2α+β)的值.

分析 由已知求得sinα的值,再由sin(α+β)=1得到cos(α+β)=0,把cos(2α+β)拆為cos[α+(α+β)],然后展開兩角和的余弦求得cos(2α+β)的值.

解答 解:∵α為第三象限角,且cosα=-$\frac{1}{3}$,
∴sinα=-$\sqrt{1-si{n}^{2}α}=-\sqrt{1-(-\frac{1}{3})^{2}}=-\frac{2\sqrt{2}}{3}$,
又∵sin(α+β)=1,∴cos(α+β)=0,
則cos(2α+β)=cos[α+(α+β)]
=cosαcos(α+β)-sinαsin(α+β)
=$-\frac{1}{3}×0$$-(-\frac{2\sqrt{2}}{3})×1$=$\frac{2\sqrt{2}}{3}$.

點評 本題考查兩角和與差的余弦,考查了同角三角函數(shù)基本關(guān)系式的應(yīng)用及象限符號,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.命題“任意x∈R,|x|≥0”的否定是( 。
A.任意x∈R,|x|<0B.任意x∈R,|x|≤0C.彐x∈R,|x|<0D.彐x∈R,|x|≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=2$\sqrt{3}$sin(π-x)sin($\frac{π}{2}$+x)+2cos2x-1.
(1)求函數(shù)f(x)的最大值和最小值,并求取得最大值和最小值時對應(yīng)的x的值.
(2)設(shè)方程f(x)=m在區(qū)間(0,π)內(nèi)有兩個相異的實數(shù)根x1,x2,求x1+x2的值.
(3)如果對于區(qū)間[-$\frac{π}{6}$,$\frac{π}{3}$]上的任意一個x,都有f(x)-a≤1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知公差不為零的等差數(shù)列{an}的首項為2,前n項和為Sn,且數(shù)列{$\frac{{S}_{n}}{{a}_{n}}$}是等差數(shù)列,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.直線x+2y=2,則x2+y2的最小值為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.二項式(1-2x)6展開式中x4的系數(shù)是240.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\frac{sin(2π+α)}{cos(π+α)}$=-3,求$\frac{2cos(π-α)-3sin(π+α)}{4cos(-α)+sin(2π-α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知θ∈(0°,360°),sinθ,cosθ是方程x2-mx+m+1=0的兩個根,求角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|3≤3x≤27},B={x|x>2},全集U=R.
(1)求(∁UB)∪A;
(2)已知集合C={x|1<x<a},若C⊆A,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案