【題目】某校200名學生的數(shù)學期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,,,.

1)求圖中的值;

2)根據頻率分布直方圖,估計這200名學生的平均分;

3)若這200名學生的數(shù)學成績中,某些分數(shù)段的人數(shù)與英語成績相應分數(shù)段的人數(shù)之比如下表所示,求英語成績在的人數(shù).

分數(shù)段

1:2

2:1

6:5

1:2

1:1

【答案】(1)(2)分(3)140

【解析】

1)在頻率分布直方圖中所有小矩形的面積之和為1,由此可得

2)頻率分布直方圖中每一個小矩形的面積乘以底邊中點的橫坐標之和即為平均數(shù),即為估計平均數(shù);

(3)求出這200名學生的數(shù)學成績在,的人數(shù),然后計算出各分數(shù)段的英語人數(shù)即可.

1)由,解得.

2)頻率分布直方圖中每一個小矩形的面積乘以底邊中點的橫坐標之和即為平均數(shù),即估計平均數(shù)為

.

3)由頻率分布直方圖可求出這200名學生的數(shù)學成績在,,的分別有60人,40人,10人,按照表中給的比例,則英語成績在,的分別有50人,80人,10人,所以英語成績在的有140.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某地空氣中出現(xiàn)污染,須噴灑一定量的去污劑進行處理.據測算,每噴灑1個單位的去污劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關系式近似為,若多次噴灑,則某一時刻空氣中的去污劑濃度為每次投放的去污劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中去污劑的濃度不低于4(毫克/立方米)時,它才能起到去污作用.

(Ⅰ)若一次噴灑4個單位的去污劑,則去污時間可達幾天?

(Ⅱ)若第一次噴灑2個單位的去污劑,6天后再噴灑 個單位的去污劑,要使接下來的4天中能夠持續(xù)有效去污,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義域為(0,+∞)的單調函數(shù),若對任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在區(qū)間(0,3]上有兩解,則實數(shù)a的取值范圍是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知點的直角坐標為,曲線的極坐標方程為,直線過點且與曲線相交于兩點.

(1)求曲線的直角坐標方程;

(2)若,求直線的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|4x﹣a|+|4x+3|,g(x)=|x﹣1|﹣|2x|.
(1)解不等式g(x)>﹣3;
(2)若存在x1∈R,也存在x2∈R,使得f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠新研發(fā)了一種產品,該產品每件成本為5元,將該產品按事先擬定的價格進行銷售,得到如下數(shù)據:

單價(元)

8

8.2

8.4

8.6

8.8

9

銷量(件)

90

84

83

80

75

68

1)求銷量(件)關于單價(元)的線性回歸方程;

2)若單價定為10元,估計銷量為多少件;

3)根據銷量關于單價的線性回歸方程,要使利潤最大,應將價格定為多少?

參考公式:,.參考數(shù)據:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓 (a>b>0)的離心率為 ,焦點到相應準線的距離為1.
(1)求橢圓的標準方程;
(2)若P為橢圓上的一點,過點O作OP的垂線交直線 于點Q,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個同學分別拋擲一枚質地均勻的骰子.

(1)求他們拋擲的骰子向上的點數(shù)之和是4的倍數(shù)的概率;

(2)求甲拋擲的骰子向上的點數(shù)不大于乙拋擲的骰子向上的點數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本萬元,每生產(百輛),需另投入成本萬元,且.由市場調研知,每輛車售價萬元,且全年內生產的車輛當年能全部銷售完.

(1)求出2018年的利潤(萬元)關于年產量(百輛)的函數(shù)關系式;(利潤=銷售額-成本)

(2)2018年產量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.

查看答案和解析>>

同步練習冊答案