17.一首詩詞《巍巍寶塔》中寫道:
“遙望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈”
根據(jù)詩詞中的描述,算出塔尖的燈數(shù)為3.

分析 設(shè)每層的燈數(shù)組成等比數(shù)列{an},S7=381,公比q=2.利用等比數(shù)列的前n項(xiàng)和公式即可得出.

解答 解:設(shè)每層的燈數(shù)組成等比數(shù)列{an},S7=381,公比q=2.
∴$\frac{{a}_{1}({2}^{7}-1)}{2-1}$=381,
解得a1=3.
故答案為:3.

點(diǎn)評 本題考查了等比數(shù)列的等比數(shù)列的前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓C:$\frac{x^2}{4}$+$\frac{y^2}{3}$=1的左右兩個(gè)頂點(diǎn)分別為A,B,點(diǎn)M是直線l:x=4上任意一點(diǎn),直線MA,MB分別與橢圓交于不同于A,B兩點(diǎn)的點(diǎn)P,點(diǎn)Q.
(Ⅰ)求橢圓的離心率和右焦點(diǎn)F的坐標(biāo);
(Ⅱ)(i)證明P,F(xiàn),Q三點(diǎn)共線;
(ii)求△PQB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知A(0,1),B(0,-1)是橢圓$\frac{x^2}{2}$+y2=1的兩個(gè)頂點(diǎn),過其右焦點(diǎn)F的直線l與橢圓交于C,D兩點(diǎn),與y軸交于P點(diǎn)(異于A,B兩點(diǎn)),直線AC與直線BD交于Q點(diǎn).
(Ⅰ)當(dāng)|CD|=$\frac{{3\sqrt{2}}}{2}$時(shí),求直線l的方程;
(Ⅱ)求證:$\overrightarrow{OP}$•$\overrightarrow{OQ}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.一袋中有8個(gè)大小相同的小球,其中1個(gè)黑球,3個(gè)白球,4個(gè)紅球.若從袋中一次摸出2個(gè)小球,求恰為異色球的概率為( 。
A.$\frac{1}{7}$B.$\frac{2}{7}$C.$\frac{15}{28}$D.$\frac{19}{28}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=ln(cosx)在區(qū)間(-$\frac{π}{2}$,$\frac{π}{2}$)上的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.執(zhí)行如圖所示的流程圖,輸出的S的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=sin(ωx+φ)(ω>0),如果存在實(shí)數(shù)x0,使得對任意的實(shí)數(shù)x,都有f(x0)≤f(x)≤f(x0+6π)成立,則ω的最小值為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在三棱錐P-SBC中,A,D分別為邊SB,SC的中點(diǎn),且AB=3,BC=8,CD=5.PA⊥BC.
(1)求證:平面PSB⊥平面ABCD;
(2)若平面PAD∩平面PBC=l,求證:l∥BC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若點(diǎn)M是以橢圓$\frac{x^2}{4}+\frac{y^2}{3}$=1的短軸為直徑的圓在第一象限內(nèi)的一點(diǎn),過點(diǎn)M作該圓的切線交橢圓于P,Q兩點(diǎn),橢圓的右焦點(diǎn)為F2,則△PQF2的周長是4.

查看答案和解析>>

同步練習(xí)冊答案