2.執(zhí)行如圖所示的流程圖,輸出的S的值為2.

分析 模擬程序框圖的運行過程,即可得出該程序執(zhí)行的結(jié)果是什么.

解答 解:i=0<4,s=$\frac{2-1}{2+1}$=$\frac{1}{3}$,
i=1<4,s=$\frac{\frac{1}{3}-1}{\frac{1}{3}+1}$=-$\frac{1}{2}$,
i=2<4,s=$\frac{-\frac{1}{2}-1}{-\frac{1}{2}+1}$=-3,
i=3<4,s=$\frac{-3-1}{-3+1}$=2,
i=4,輸出s=2,
故答案為:2.

點評 本題考查了程序框圖的應(yīng)用問題,解題時應(yīng)模擬程序框圖的運行過程,以便得出該程序執(zhí)行的結(jié)果是什么,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知命題p:?m∈R,sinm=$\frac{1}{3}$,命題q:?x∈R,x2+mx+1>0恒成立,若p∧q為假命題,則數(shù)m的取值范圍是( 。
A.m≥2B.m≤-2C.m≤-2或m≥2D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.有紅、黃、藍三種顏色,大小相同的小球各三個,在每種顏色的3個小球上分別標上號碼1、2、3,現(xiàn)任取出3個,它們的顏色與號碼均不相同的概率是( 。
A.$\frac{1}{14}$B.$\frac{9}{28}$C.$\frac{3}{28}$D.$\frac{3}{56}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.己知等差數(shù)列{an},設(shè)其前n項和為Sn,滿足S5=20,S8=-4.
(1)求an與Sn;
(2)設(shè)cn=anan+1an+2,Tn是數(shù)列{cn}的前n項和,若對任意n∈N+,Tn≤$\frac{m-466}{3}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一首詩詞《巍巍寶塔》中寫道:
“遙望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈”
根據(jù)詩詞中的描述,算出塔尖的燈數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖是一個算法的流程圖,則輸出i的值為4.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.環(huán)保部門對5家造紙廠進行排污檢查,若檢查不合格,則必須整改,整改后經(jīng)復(fù)查仍然不合格的,則關(guān)閉.設(shè)每家造紙廠檢查是否合格是相互獨立的,且每家造紙廠檢查前合格的概率是$\frac{1}{2}$,整改后檢查合格的概率是$\frac{4}{5}$,求:
(Ⅰ)恰好有兩家造紙廠必須整改的概率;
(Ⅱ)至少要關(guān)閉一家造紙廠的概率;
(Ⅲ)平均多少家造紙廠需要整改?(其中($\frac{9}{10}$)5≈$\frac{59}{100}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)$f(x)=x+\frac{1+a}{x}-alnx$,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間[1,e](e=2.718…)上存在一點x0,使得${x_0}+\frac{1}{x_0}<a(ln{x_0}-\frac{1}{x_0})$成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的頂點到直線l1:y=x的距離分別為$\sqrt{2}$,$\frac{\sqrt{2}}{2}$.
(1)求C1的標準方程;
(2)設(shè)平行于l1的直線l交C1與A、B兩點,若以AB為直徑的圓恰好過坐標原點,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案