已知三角形的三邊分別為a,b,c,內(nèi)切圓的半徑為r,則三角形的面積為s=(a+b+c)r;四面體的四個(gè)面的面積分別為s1,s2,s3,s4,內(nèi)切球的半徑為R.類(lèi)比三角形的面積可得四面體的體積為( )
A.?=(s1+s2+s3+s4)R
B.?=(s1+s2+s3+s4)R
C.?=(s1+s2+s3+s4)R
D.?=(s1+s2+s3+s4)R
【答案】分析:根據(jù)三角形的邊應(yīng)與四面體中的各個(gè)面進(jìn)行類(lèi)比,而面積與體積進(jìn)行類(lèi)比,進(jìn)行猜想.
解答:解:根據(jù)幾何體和平面圖形的類(lèi)比關(guān)系,
三角形的邊應(yīng)與四面體中的各個(gè)面進(jìn)行類(lèi)比,而面積與體積進(jìn)行類(lèi)比:
∴△ABC的面積為s=(a+b+c)r,
對(duì)應(yīng)于四面體的體積為V=(s1+s2+s3+s4)R.
故選B.
點(diǎn)評(píng):本題考查了立體幾何和平面幾何的類(lèi)比推理,一般平面圖形的邊、面積分別于幾何體中的面和體積進(jìn)行類(lèi)比,從而得到結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為x,y與2,請(qǐng)?jiān)谥苯亲鴺?biāo)系內(nèi)用平面區(qū)域表示點(diǎn)P(x,y)的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為a,b,c,內(nèi)切圓的半徑為r,則三角形的面積S=
1
2
(a+b+c)•r,四面體的四個(gè)面的面積分別為S1,S2,S3,S4,內(nèi)切球的半徑為R,類(lèi)比三角形的面積可得四面體的體積為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為a,b,c,內(nèi)切圓的半徑為r,則三角形的面積為s=
1
2
(a+b+c)r;四面體的四個(gè)面的面積分別為s1,s2,s3,s4,內(nèi)切球的半徑為R.類(lèi)比三角形的面積可得四面體的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三角形的三邊分別為,內(nèi)切圓的半徑為,則三角形的面積為;四面體的四個(gè)面的面積分別為,內(nèi)切球的半徑為.類(lèi)比三角形的面積可得四面體的體積為(      )

A.         B. 

C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆河南省高二下第二次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知三角形的三邊分別為,內(nèi)切圓的半徑為,則三角形的面積為;四面體的四個(gè)面的面積分別為,內(nèi)切球的半徑為。類(lèi)比三角形的面積可得四面體的體積為(      )。

A.        B.

C.        D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案