分析 (1)先證出BB1⊥AC,AC⊥B1D,即可證明AC⊥平面BB1D,從而證出AC⊥BD;
(2)先證明CC1∥平面BB1D,得出CC1∥FG,從而得出FG∥BB1,再證出FG∥平面AA1B1B.
解答 解:(1)證明:四棱柱ABCD-A1B1C1D1中,
∵BB1⊥底面ABCD,AC?平面ABCD,
∴BB1⊥AC;
又AC⊥B1D,
BB1∩B1D=B1,
∴BB1?平面BB1D,B1D?平面BB1D,
∴AC⊥平面BB1D;
又BD?平面BB1D,
∴AC⊥BD;
(2)四棱柱ABCD-A1B1C1D1中,CC1∥BB1,
CC1?平面BB1D,BB1?平面BB1D,
∴CC1∥平面BB1D;
又平面CEC1∩平面BB1D=FG,
∴CC1∥FG,
∴FG∥BB1;
又FG?平面ABB1A1,BB1?平面ABB1A1,
∴FG∥平面AA1B1B.
點(diǎn)評(píng) 本題主要考查了空間中的直線與平面垂直、直線與平面平行的判定和性質(zhì)的應(yīng)用問題,也考查了空間想象能力和推理論證能力,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a30,a1 | B. | a1,a30 | C. | a8,a30 | D. | a8,a7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
公務(wù)員 | 教師 | 合計(jì) | |
同意延遲退休 | 40 | n | 70 |
不同意延遲退休 | m | 20 | p |
合計(jì) | 50 | 50 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com