8.2014年7月16日,中國(guó)互聯(lián)網(wǎng)絡(luò)信息中心發(fā)布《第三十四次中國(guó)互聯(lián)網(wǎng)發(fā)展?fàn)顩r報(bào)告》,報(bào)告顯示:我國(guó)網(wǎng)絡(luò)購(gòu)物用戶已達(dá)3.32億.為了了解網(wǎng)購(gòu)者一次性購(gòu)物金額情況,某統(tǒng)計(jì)部門隨機(jī)抽查了6月1日這一天100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表.已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購(gòu)金額
(單位:元)
頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.30
(2500,3000]yq
合計(jì)1001.00
(Ⅰ)確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖;
(Ⅱ)為進(jìn)一步了解網(wǎng)購(gòu)金額的多少是否與網(wǎng)齡有關(guān),對(duì)這100名網(wǎng)購(gòu)者調(diào)查顯示:購(gòu)物金額在2000元以上的網(wǎng)購(gòu)者中網(wǎng)齡3年以上的有35人,購(gòu)物金額在2000元以下(含2000元)的網(wǎng)購(gòu)者中網(wǎng)齡不足3年的有20人.
①請(qǐng)將列聯(lián)表補(bǔ)充完整;
網(wǎng)齡3年以上網(wǎng)齡不足3年合計(jì)
購(gòu)物金額在2000元以上35
購(gòu)物金額在2000元以下20
合計(jì)100
②并據(jù)此列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在三年以上有關(guān)?
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:${{K}^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

分析 (1)求出網(wǎng)購(gòu)金額在2000元以上的人數(shù),可得x,y的值,由此能求出x,y,p,q的值,并補(bǔ)全頻率分布直方圖.
(2)由數(shù)據(jù)可得列聯(lián)表,利用公式,可得結(jié)論.

解答 解:(1)因?yàn)榫W(wǎng)購(gòu)金額在2000元以上的頻率為0.4,
所以網(wǎng)購(gòu)金額在2000元以上的人數(shù)為100×0.4=40
所以30+y=40,所以y=10,…(1分)x=15,…(2分)     
所以p=0.15,q=0.1…(4分)
所以頻率分布直方圖如圖…(5分)
(2)由題設(shè)列聯(lián)表如下

網(wǎng)齡3年以上網(wǎng)齡不足3年合計(jì)
購(gòu)物金額在2000元以上35540
購(gòu)物金額在2000元以下402060
合計(jì)7525100
…(7分)
K2=$\frac{100×(35×20-40×5)^{2}}{75×25×40×60}$≈5.56…(9分)
因?yàn)?.56>5.024…(10分)
所以據(jù)此列聯(lián)表判斷,沒有在犯錯(cuò)誤的概率不超過(guò)0.01的前提下,認(rèn)為網(wǎng)購(gòu)金額超過(guò)2000元與網(wǎng)齡在三年以上有關(guān).…(12分)

點(diǎn)評(píng) 本題考查頻率分布直方圖,考查獨(dú)立性檢驗(yàn)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.給出下列四個(gè)命題:
①若平面α∥β,直線a?α,直線b?β,則a∥b      
②若直線a∥b,a∥α,則b∥α
③若平面α∥β,直線a?α,則a∥β         
④若直線a∥α,a∥β,則α∥β
其中正確命題有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.函數(shù)f(x)是定義域?yàn)镽的單調(diào)增函數(shù),且f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2(1+x)
(1)求f(x)的解析式;
(2)解關(guān)于t的不等式f(t2-2t)+f(2t2-5)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=-x2+ex-1(x≤1)與g(x)=ln(-x+a)的圖象上存關(guān)于直線y=x-1對(duì)稱的點(diǎn),則a的取值范圍是( 。
A.(-∞,-2]B.[2,+∞)C.(-∞,2]D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)$f(x)={log_a}\frac{1-x}{1+x}$(a>0且a≠1)
(1)若$f(-\frac{1}{3})=1$,集合A={x|f(x)=-2},B={1},寫出集合A∪B的所有子集;
(2)若$f(-\frac{11}{13})=m$,$f(-\frac{7}{11})=n$,試用m,n來(lái)表示$f(-\frac{5}{7})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,⊙O的弦AD∥BC,過(guò)點(diǎn)D的切線交BC的延長(zhǎng)線于點(diǎn)E,AC∥DE交BD于點(diǎn)H,DO及延長(zhǎng)線分別交AC,BC于點(diǎn)G,F(xiàn).
(1)求證:DF垂直且平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=|lgx|.
(1)畫出函數(shù)y=f(x)的圖象;
(2)若存在互不相等的實(shí)數(shù)a,b使f(a)=f(b),求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆湖北襄陽(yáng)四中高三七月周考三數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知

(1)若存在使得≥0成立,求的范圍;

(2)求證:當(dāng)>1時(shí),在(1)的條件下,成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=2sin2x+sin2x.
(1)求函數(shù)f(x)的最小正周期和最大值;
(2)畫出函數(shù)y=f(x)在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象.

查看答案和解析>>

同步練習(xí)冊(cè)答案