【題目】如下圖,三棱柱中,側(cè)面 底面, ,且,O為中點.
(Ⅰ)證明: 平面;
(Ⅱ)求直線與平面所成角的正弦;
(Ⅲ)在上是否存在一點,使得平面,若不存在,說明理由;若存在,確定點的位置.
【答案】(1)詳見解析;(2);(3)為的中點.
【解析】(1)因為側(cè)面底面,所以只需證明即可.
(2)可以以O為原點,ON,OC,OA1所在直線為x,y,z軸建立空間直角坐標(biāo)系,然后用向量的方法求解線面角的問題.
(3)在(2)的基礎(chǔ)上也可以用向量來求點E位置.也可以取BC的中點M,連接OM,取BC1的中點E,連接ME,則OM//AB,ME//BB1//AA1,所以平面OMB//平面AA1B,所以OE//平面.從而確定E為BC1的中點.
(Ⅰ)證明:因為,且O為AC的中點,
所以
又由題意可知,平面平面,交線為,且平面,
所以平面
(Ⅱ)如圖,以O為原點, 所在直線分別為x,y,z軸建立空間直角坐標(biāo)系.
由題意可知, 又
所以得:
則有:
設(shè)平面的一個法向量為,則有
,令,得
所以
因為直線與平面所成角和向量與所成銳角互余,所以
(Ⅲ)設(shè)
即,得
所以得
令平面,得,
即得
即存在這樣的點E,E為的中點
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知單調(diào)遞增的等差數(shù)列{an},滿足|a10a11|>a10a11 , 且a102<a112 , Sn為其前n項和,則( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10為Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10為Sn的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程,其左焦點、上頂點和左頂點分別為, , ,坐標(biāo)原點為,且線段, , 的長度成等差數(shù)列.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過點的一條直線交橢圓于點, ,交軸于點,使得線段被點, 三等分,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是否存在實數(shù)a,使得函數(shù)y=cos2x+asinx+ ﹣ 在閉區(qū)間[0,π]的最大值是0?若存在,求出對應(yīng)的a的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】繼共享單車之后,又一種新型的出行方式------“共享汽車”也開始亮相北上廣深等十余大中城市,一款叫“一度用車”的共享汽車在廣州提供的車型是“奇瑞eQ”,每次租車收費按行駛里程加用車時間,標(biāo)準(zhǔn)是“1元/公里+0.1元/分鐘”,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:
時間(分鐘) | |||||
次數(shù) | 8 | 14 | 8 | 8 | 2 |
以各時間段發(fā)生的頻率視為概率,假設(shè)每次路上開車花費的時間視為用車時間,范圍為分鐘.
(Ⅰ)若李先生上.下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設(shè)是4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)寫出函數(shù)的值域,單調(diào)區(qū)間(不必證明);
(2)是否存在實數(shù)使得的定義域為,值域為?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a,b,c分別為角A,B,C的對邊.若acosB=3,bcosA=l,且A﹣B=
(1)求邊c的長;
(2)求角B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓過定點,且在軸上截得的弦長為4,記動圓圓心的軌跡為曲線C.
(Ⅰ)求直線與曲線C圍成的區(qū)域面積;
(Ⅱ)點在直線上,點,過點作曲線C的切線、,切點分別為、,證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程及直線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于兩點,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com