如圖,已知函數(shù)y=Asin(ωx+φ)(A>0,0<φ<π)的圖象經(jīng)過(guò)點(diǎn)(-
π
6
,0)、(
5
6
π,0),且該函數(shù)的最大值為2,最小值為-2,
(1)求函數(shù)的解析式; 
(2)求函數(shù)的增區(qū)間.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的單調(diào)性
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由圖可直接求得A,T,利用周期公式求ω,利用五點(diǎn)作圖的第一點(diǎn)求φ;
(2)直接由復(fù)合函數(shù)的單調(diào)性求解函數(shù)的增區(qū)間.
解答: 解:(1)由圖可知,A=2,T=
ω
=
6
-(-
π
6
)=π
,
∴ω=2.
由五點(diǎn)作圖的第一點(diǎn)知,2×(-
π
6
)+φ=0,解得φ=
π
3

∴y=2sin(2x+
π
3
);
(2)y=2sin(2x+
π
3
).
-
π
2
+2kπ≤2x+
π
3
π
2
+2kπ
,得
-
12
+kπ≤x≤
π
12
+kπ,k∈Z

∴函數(shù)的單調(diào)增區(qū)間為[-
12
+kπ,
π
12
+kπ
],k∈Z.
點(diǎn)評(píng):本題考查了由y=Asin(ωx+φ)的部分圖象求函數(shù)解析式,考查了復(fù)合函數(shù)的單調(diào)性的求法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知a=6,b=4,C=120°,則c的值是(  )
A、76
B、2
19
C、28
D、2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=loga|x+1|,當(dāng)x∈(-1,0)時(shí),恒有f(x)>0,有( 。
A、f(x)在(-∞,-1)上是增函數(shù)
B、f(x)在(-∞,0)上是減函數(shù)
C、f(x)在(0,+∞)上是增函數(shù)
D、f(x)在(-∞,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-
3
5

(Ⅰ)求sinαcosα-cos2α的值;
(Ⅱ)求
cos(3π+α)cos(
π
2
+α)cos(
11π
2
-α)
cos(π-α)sin(-π-α)sin(
9
2
π+α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-12x+8在區(qū)間[-5,3]上的最大值與最小值為M,m,求M-m值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(sinωx,
3
sinωx),
b
=(sinωx,cosωx)(ω>0),函數(shù)f(x)=
a
b
-
1
2
,且f(x)的最小正周期為π.
(Ⅰ)求ω的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)10個(gè)接受心臟搭橋手術(shù)的病人和10個(gè)接受血管清障手術(shù)的病人進(jìn)行了3年的跟蹤研究,調(diào)查他們是否又發(fā)作過(guò)心臟病,調(diào)查結(jié)果如下表所示:
又發(fā)作過(guò)心臟病未發(fā)作過(guò)心臟病合計(jì)
心臟搭橋手術(shù)3710
血管清障手術(shù)5510
合計(jì)81220
試根據(jù)上述數(shù)據(jù)計(jì)算X2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.
(Ⅰ)當(dāng)a∈[-2,2]時(shí),求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若對(duì)于任意的a∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上奇函數(shù)g(x)與偶函數(shù)h(x),對(duì)任意x∈R滿足g(x)+h(x)=sin2x+sinx+acosx.a(chǎn)為實(shí)數(shù)
(1)求奇函數(shù)g(x)和偶函數(shù)f(x)的表達(dá)式;
(2)若a>2,求函數(shù)h(x)在區(qū)間[
π
3
,π]上的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案