4.已知長方體的長、寬、高分別為3,2,$\sqrt{3}$,則該長方體外接球的體積為( 。
A.B.16πC.$\frac{16}{3}$πD.$\frac{32}{3}$π

分析 根據(jù)長方體的對角線長公式,算出該長方體的對角線長,從而算出它的外接球半徑,利用球的體積公式即可算出答案.

解答 解:∵長方體從同一頂點出發(fā)的三條棱長分別為3,2,$\sqrt{3}$,
∴長方體的對角線長為$\sqrt{9+4+3}$=4,
設長方體外接球半徑為R,則2R=4,解得R=2,
∴該長方體外接球的體積為$\frac{4π}{3}×{2}^{3}$=$\frac{32π}{3}$.
故選:D.

點評 本題給出長方體的長、寬、高,求它的外接球的體積.著重考查了長方體的對角線長公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=3x2-2(a+b)x+ab,函數(shù)g(x)=(x-a)(x-b) a,b∈R
(1)當b=1時,解關于x的不等式:f(x)>(a+3)x2-(3a+4)x+a+2;
(2)若b>a>0且a+b<2$\sqrt{3}$,已知函數(shù)f(x)有兩個零點s和t,若點A(s,s•g(s)),B(t,t•g(t)),其中O是坐標原點,證明:$\overrightarrow{OA}$與$\overrightarrow{OB}$不可能垂直.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若直線l1:mx-3y-2=0與直線l2:(2-m)x-3y+5=0互相平行,則實數(shù)m的值為( 。
A.2B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在極坐標系中,已知點A(1,$\frac{π}{2}$),點P是曲線ρsin2θ=4cosθ上任意一點,設點P到直線ρcosθ+1=0的距離為d,則|PA|+d的最小值為(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.有甲、乙、丙、丁四位歌手參加比賽,其中只有一位獲獎,有人走訪了四位歌手,甲說:“是乙或丙獲獎”;乙說:“甲、丙都未獲獎”;丙說:“我獲獎了”,丁說:“是乙獲獎”.若四位歌手的話只有一句是錯的,則獲獎的歌手是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.過點P(-1,3)且平行于直線x-2y+3=0的直線方程為( 。
A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=(2+a)x+a2lnx,g(x)=x2+2x+b(a,b∈R).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)設兩曲線y=f(x)與y=g(x)有公共點,且在公共點處的切線相同,若a>0,試建立b關于a的函數(shù)關系式,并求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若G為△ABC的重心,則( 。
A.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{AC}$B.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AG}$=$\frac{1}{2}$$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AC}$D.$\overrightarrow{AG}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在極坐標系中,曲線C的極坐標方程為ρ=2cosθ+2sinθ(0≤θ<2π),點M(1,$\frac{π}{2}$),以極點O為原點,以極軸為x軸的正半軸建立平面直角坐標系.已知直線l:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點,且|MA|>|MB|.
(1)若P(ρ,θ)為曲線C上任意一點,求ρ的最大值,并求此時點P的極坐標;
(2)求$\frac{|MA|}{|MB|}$.

查看答案和解析>>

同步練習冊答案