8.已知各項(xiàng)都不相等的等差數(shù)列{an}滿足a4=10,且a1,a2,a6成等比數(shù)列.若${_{n}}={{2}^{{{a}_{n}}}}$+2n,則數(shù)列{bn}的前n項(xiàng)和Sn=$\frac{2}{7}({{8}^{n}}-1)+n(n+1)$.

分析 由等比數(shù)列等比中項(xiàng)的性質(zhì),(a4-3d)•(a4+2d)=(a4-2d)2,求得d,根據(jù)等差數(shù)列的通項(xiàng)公式的性質(zhì),求得an和bn的通項(xiàng)公式,根據(jù)等比數(shù)列和等差數(shù)列的前n項(xiàng)和公式,即可求得數(shù)列{bn}的前n項(xiàng)和Sn

解答 解:由{an}成等差數(shù)列且a1,a2,a6成等比數(shù)列,
∴(a4-3d)•(a4+2d)=(a4-2d)2,即(10-3d)•(10+2d)=(10-2d)2
整理得:d2=3d,由d≠0,
解得:d=3,
∴an=a4+3(n-4)×3=3n-2,
${_{n}}={{2}^{{{a}_{n}}}}$+2n=23n-2+2n,
∴數(shù)列{bn}的前n項(xiàng)和Sn=b1+b2+…+bn
=(2+24+27+…+23n-2)+2(1+2+…+n)
=$\frac{2(1-{8}^{n})}{1-8}$+2•$\frac{n(1+n)}{2}$,
=$\frac{2}{7}$(8n-1)+n(n+1),
故答案為:$\frac{2}{7}({{8}^{n}}-1)+n(n+1)$.

點(diǎn)評(píng) 本題主要考查等比數(shù)列,等差數(shù)列的通項(xiàng)公式,求和公式的應(yīng)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{2}$,且圖象上一個(gè)最低點(diǎn)為M($\frac{2π}{3}$,-2).則f(x)的解析式為f(x)=2sin(2x+$\frac{π}{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=2sin$\frac{x}{4}$cos$\frac{x}{4}$-2$\sqrt{3}$sin2$\frac{x}{4}$+$\sqrt{3}$.
(1)求f(x)的最小正周期及最值;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{6}$,$\frac{5π}{24}}$]上的最大值和最小值以及取得最大值和最小值時(shí)自變量的取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知非空集合M滿足:若x∈M,則$\frac{1}{1-x}$∈M,則當(dāng)4∈M時(shí),集合M的所有元素之積等于-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ex+mx-1(m∈R).
(I)討論f(x)的單調(diào)性;
(Ⅱ)若存在正實(shí)數(shù)x0,使得f(x0)=x0lnx0,求m的最大值;
(Ⅲ)若g(x)=ln(ex-1)-lnx,且x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下面是關(guān)于向量的四個(gè)命題,其中的真命題為( 。
p1:同一組基底下的同一向量的表現(xiàn)形式是唯一的.
p2:$\overrightarrow{a}$∥$\overrightarrow{c}$是($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)的充分條件.
p3:在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{BC}$<0,則△ABC為鈍角三角形.
p4:已知|$\overrightarrow{a}$|=2,向量$\overrightarrow{a}$與$\overrightarrow$的夾角是$\frac{3}{4}$π,則$\overrightarrow{a}$在$\overrightarrow$上的投影是$\sqrt{2}$.
A.p1,p2B.p2,p3C.p2,p4D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和Sn=1-an,其中n∈N*
(I)求{an}的通項(xiàng)公式;
(II)若bn=nan,求{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.小孔家有爺爺、奶奶、姥爺、姥姥、爸爸、媽媽,包括他共7人,一天爸爸從果園里摘了7個(gè)大小不同的梨,給家里每人一個(gè),小孔拿了最小的一個(gè),爺爺、奶奶、姥爺、姥姥4位老人之一拿最大的一個(gè),則梨子的不同分法共有( 。
A.96種B.120種C.480種D.720種

查看答案和解析>>

同步練習(xí)冊(cè)答案