已知a,b,c滿足c<b<a且ac<0,則下列選項(xiàng)中不一定能成立的是(  )
A、
c
a
b
a
B、
b-a
c
>0
C、
a-c
ac
<0
D、
b2
c
a2
c
考點(diǎn):不等關(guān)系與不等式
專題:不等式的解法及應(yīng)用
分析:根據(jù)條件判斷a>0且c<0,b任意,結(jié)合不等式的性質(zhì)進(jìn)行判斷即可.
解答: 解:∵c<b<a且ac<0,
∴a>0且c<0,b任意,
則A.
c
a
b
a
成立,
B.b-a<0,c<0,∴
b-a
c
>0成立,
C.a(chǎn)-c>0且ac<0,∴
a-c
ac
<0
成立,
D.當(dāng)b=-a時(shí),不等式
b2
c
a2
c
不成立,
故選:D
點(diǎn)評:本題主要考查不等式的性質(zhì)以及不等式大小的判斷,根據(jù)條件判斷a>0且c<0,b任意是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,已知橢圓的焦點(diǎn)為(-
3
,0)(
3
,0),離心率為
3
2

(1)求橢圓的方程;
(2)若圓M:x2+(y-m)2=1上的點(diǎn)到橢圓上的點(diǎn)的最遠(yuǎn)距離為
5
+1,求m的值;
(3)過坐標(biāo)原點(diǎn)作斜率為k的直線l交橢圓于P、Q兩點(diǎn),點(diǎn)N為橢圓上任意一點(diǎn)(異于點(diǎn)P,Q),設(shè)直線NP,NQ的斜率均存在且分別記為kNp,kNQ.證明:對任意k,恒有kNPkNQ=-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某工廠有工人1000名,其中250名工人參加過短期培訓(xùn)(稱為A類工人),另外750名工人參加過長期培訓(xùn)(稱為B類工人),現(xiàn)用分層抽樣方法(按A類、B類分二層)從該工廠的工人中共抽查100名工人,調(diào)查他們的生產(chǎn)能力(此處生產(chǎn)能力指一天加工的零件數(shù)).從A類工人中的抽查結(jié)果和從B類工人中的抽查結(jié)果分別如表1和表2.
表1
生產(chǎn)能力分組[100,110)[110,120)[120,130)[130,140)[140,150]
人數(shù)48x53
表2
生產(chǎn)能力分組[110,120)[120,130)[130,140)[140,150]
人數(shù)6y3618
(Ⅰ)先確定x,y,再在圖中完成表1和表2的頻率分布直方圖.就生產(chǎn)能力而言,A類工人中個(gè)體間的差異程度與B類工人中個(gè)體間的差異程度哪個(gè)更小?(不用計(jì)算,可通過觀察直方圖直接回答結(jié)論)

(Ⅱ)分別估計(jì)A類工人和B類工人生產(chǎn)能力的平均數(shù),并估計(jì)該工廠工人的生產(chǎn)能力的平均數(shù).(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的零點(diǎn):
(1)f(x)=-8x2+7x+1;
(2)f(x)=ln(x-
1
2
);
(3)f(x)=ex-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓x2+
y2
k
=1的一個(gè)焦點(diǎn)是(0,
5
),那么k=( 。
A、-6
B、6
C、
5
+1
D、1-
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=3,cosA=-
1
2
,則△ABC的外接圓半徑是(  )
A、
1
2
B、
3
2
C、2
3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(1-2x)2011=a0+a1x+…+a2011x2011(x∈R),則
a1
2
+
a2
22
+…+
a2011
a2011
的值為( 。
A、2B、0C、-1D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在R上奇函數(shù),且當(dāng)x>0時(shí),f(x)=2x-3,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=loga(x-1)+2的圖象過定點(diǎn)
 

查看答案和解析>>

同步練習(xí)冊答案