【題目】已知橢圓的長軸長為4,過點且斜率為的直線交橢圓于兩點,且點為線段的中點

1)求橢圓的方程;

2)設(shè)點為坐標(biāo)原點,過右焦點的直線交橢圓于兩點,(不在軸上),求面積的最大值.

【答案】(1) (2)

【解析】

1)由已知條件推導(dǎo)出,設(shè),由此能求出橢圓C的方程.

2)設(shè),由題意設(shè)直線AB的方程為,,得關(guān)于的一元二次方程,由此韋達定理、點到直線距離公式等結(jié)合已知條件能求出面積的最大值.

解:由題知,長軸長為4,,

過點且斜率為的直線交橢圓于,

設(shè),,,

,.

③得,

,

,

,

由①④解得,,故橢圓C的標(biāo)準(zhǔn)方程為

2)由(1)知,,所以右焦點

又因為過右焦點的直線交橢圓于兩點,不在軸上),

設(shè),由題意:

①當(dāng)斜率不存時,設(shè)的方程為

,

②當(dāng)斜率存時,設(shè)的方程為,

由題意:

,消去并整理,,

由韋達定理,得

到直線的距離為,

設(shè),

,,又因為,

當(dāng)時,,函數(shù)單調(diào)遞減,

當(dāng)時,,函數(shù)單調(diào)遞增,

所以沒有極值.

所以當(dāng)斜率不存時有極大值為.

綜上所述,面積的最大值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左,右焦點分別為,點為橢圓上任意一點,點關(guān)于原點的對稱點為點,有,且當(dāng)的面積最大時為等邊三角形.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)與圓相切的直線交橢圓,兩點,若橢圓上存在點滿足,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個粒子從原點出發(fā),在第一象限和兩坐標(biāo)軸正半軸上運動,在第一秒時它從原點運動到點,接著它按圖所示在軸、軸的垂直方向上來回運動,且每秒移動一個單位長度,那么,在2018秒時,這個粒子所處的位置在點______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系下,方程的圖形為如圖所示的“幸運四葉草”,又稱為玫瑰線.

(1)當(dāng)玫瑰線的時,求以極點為圓心的單位圓與玫瑰線的交點的極坐標(biāo);

(2)求曲線上的點M與玫瑰線上的點N距離的最小值及取得最小值時的點M、N的極坐標(biāo)(不必寫詳細解題過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其圖象與軸交于兩點,且.

1)求的取值范圍;

2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱中,,分別為、的中點.

(1)證明:平面

(2)已知與平面所成的角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若存在兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已定義,已知函數(shù)的定義域都是,則下列四個命題中為真命題的是_________.(寫出所有真命題的序號)

都是奇函數(shù),則函數(shù)為奇函數(shù).

都是偶函數(shù),則函數(shù)為偶函數(shù).

都是增函數(shù),則函數(shù)為增函數(shù).

都是減函數(shù),則函數(shù)為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)滿足約束條件的最小值為7,則_________.

查看答案和解析>>

同步練習(xí)冊答案