14.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(1-x),x<1}\\{\frac{2}{x-1},x>1}\end{array}\right.$,函數(shù)g(x)=$\frac{k}{{x}^{2}}$(k∈N*),若函數(shù)y=f(x)-g(x)僅有1個(gè)零點(diǎn),則正整數(shù)k的最大值是7.

分析 作出f(x)與g(x)的函數(shù)圖象,根據(jù)圖象可得$\frac{k}{{x}^{2}}$<$\frac{2}{x-1}$在(1,+∞)上恒成立,分離參數(shù)得出k的范圍.

解答 解:作出f(x)的函數(shù)圖象如圖所示:

∵k是正整數(shù),∴g(x)與f(x)的圖象在第二象限必有一交點(diǎn),
又y=f(x)-g(x)僅有1個(gè)零點(diǎn),
∴$\frac{k}{{x}^{2}}$<$\frac{2}{x-1}$在(1,+∞)上恒成立.
即k<$\frac{2{x}^{2}}{x-1}$在(1,+∞)上恒成立,
∵$\frac{2{x}^{2}}{x-1}$=$\frac{2(x-1)^{2}+4(x-1)+2}{x-1}$=2(x-1)+$\frac{2}{x-1}$+4≥4+4=8,當(dāng)且僅當(dāng)x-1=$\frac{1}{x-1}$即x=2時(shí)取等號,
∴k<8.
∴正整數(shù)k的最大值為7.
故答案為:7.

點(diǎn)評 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)一組數(shù)據(jù)51,54,m,57,53的平均數(shù)是54,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.給出下列四個(gè)命題:
①f(x)=sin(2x-$\frac{π}{4}$)的對稱軸為x=$\frac{kπ}{2}$+$\frac{3π}{8}$,k∈Z;
②函數(shù)f(x)=sinx+$\sqrt{3}$cosx的最大值為2;
③函數(shù)f(x)=sinxcosx-1的周期為2π;
④函數(shù)f(x)=sin(x+$\frac{π}{4}$)在[-$\frac{π}{2}$,$\frac{π}{2}$]上是增函數(shù).
其中正確命題的個(gè)數(shù)是B
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l與直線3x+y+8=0垂直,則直線l的斜率為( 。
A.-3B.-$\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,飛機(jī)的航線和山頂在同一個(gè)鉛垂平面內(nèi),已知飛機(jī)的高度為海拔15000m,速度為1000km/h,飛行員先看到山頂?shù)母┙菫?5°,經(jīng)過108s后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹?340m.(取$\sqrt{3}$=1.732)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知A${\;}_{n}^{3}$=6C${\;}_{n}^{2}$,求n的值;
(2)求二項(xiàng)式(1-2x)4的展開式中第4項(xiàng)的系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.?dāng)?shù)學(xué)老師從6道習(xí)題中隨機(jī)抽3道讓同學(xué)檢測,規(guī)定至少要解答正確2道題才能及格.某同學(xué)只能求解其中的4道題,則他能及格的概率是$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-2,則$\frac{a_8}{a_6}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.直線y=x+1的傾斜角為(  )
A.1B.-1C.$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習(xí)冊答案