6.函數(shù)y=ex(e是自然對(duì)數(shù)的底數(shù))在點(diǎn)(0,1)處的切線方程是( 。
A.y=x-1B.y=x+1C.y=-x-1D.y=-x+1

分析 先求導(dǎo)函數(shù),進(jìn)而可以求切線斜率,從而可求切線方程.

解答 解:由題意,y′=ex
當(dāng)x=0時(shí),y′=1,
∴函數(shù)y=ex(e是自然對(duì)數(shù)的底數(shù))在點(diǎn)(0,1)處的切線方程是y-1=x-0
即y=x+1,
故選B.

點(diǎn)評(píng) 本題以函數(shù)為載體,考查導(dǎo)數(shù)的幾何意義,考查切線方程.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在區(qū)間[0,1]上任取兩個(gè)實(shí)數(shù)a,b,則函數(shù)f(x)=x2+ax+b2無零點(diǎn)的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在△ABC所在平面內(nèi)一點(diǎn)P,滿足$\overrightarrow{AP}=\frac{2}{5}\overrightarrow{AB}+\frac{1}{5}\overrightarrow{AC}$,延長BP交AC于點(diǎn)D,若$\overrightarrow{AD}=λ\overrightarrow{AC}$,則λ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若集合A={x|x=2n,n∈Z},B={x|2<x≤6,x∈R},則A∩B={4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,既是偶函數(shù),又是在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=$\frac{1}{x}$B.y=2|x|C.y=ln$\frac{1}{|x|}$D.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知實(shí)數(shù)a,b,c滿足a2+2b2+3c2=1,則a+2b的最大值是( 。
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.cos240°的值等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列選項(xiàng)中,存在實(shí)數(shù)m使得定義域和值域都是(m,+∞)的函數(shù)是(  )
A.y=exB.y=lnxC.y=x2D.y=$\frac{x-1}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+y-1≥0\\ 3x-y-3≤0\end{array}\right.$則目標(biāo)函數(shù)z=4x+y的最大值為(  )
A.4B.11C.12D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案