15.下列選項中,存在實數(shù)m使得定義域和值域都是(m,+∞)的函數(shù)是( 。
A.y=exB.y=lnxC.y=x2D.y=$\frac{x-1}{x+1}$

分析 由自變量與對應(yīng)的函數(shù)值不相等判斷A,B,D不合題意;舉例說明C正確.

解答 解:函數(shù)y=ex在定義域內(nèi)為增函數(shù),而ex>x恒成立,∴不存在實數(shù)m使得定義域和值域都是(m,+∞);
函數(shù)y=lnx在定義域內(nèi)為增函數(shù),而x>lnx恒成立,∴不存在實數(shù)m使得定義域和值域都是(m,+∞);
當(dāng)m=0時,y=x2的定義域和值域都是(m,+∞),符合題意;
對于$y=\frac{x-1}{x+1}$,由$\frac{x-1}{x+1}=x$,得x2=-1,方程無解,∴不存在實數(shù)m使得定義域和值域都是(m,+∞).
故選:C.

點評 本題考查函數(shù)的定義域及其求法,考查了函數(shù)的值域,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.過拋物線y2=4x的焦點作一條直線與拋物線相交于A,B兩點,它們的橫坐標(biāo)之和等于3,則這樣的直線( 。
A.有且僅有一條B.有且僅有兩條C.有無窮多條D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=ex(e是自然對數(shù)的底數(shù))在點(0,1)處的切線方程是( 。
A.y=x-1B.y=x+1C.y=-x-1D.y=-x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知a>0且a≠1,函數(shù)f(x)=4+loga(x+4)的圖象恒過定點P,若角α的終邊經(jīng)過點P,則cosα的值為$-\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題中假命題是(  )
A.?x0∈R,lnx0<0B.?x∈(-∞,0),ex>0
C.?x>0,5x>3xD.?x0∈(0,+∞),2<sinx0+cosx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.某投資公司準(zhǔn)備在2016年年底將1000萬元投資到某“低碳”項目上,據(jù)市場調(diào)研,該項目的年投資回報率為20%.該投資公司計劃長期投資(每一年的利潤和本金繼續(xù)用作投資),若市場預(yù)期不變,大約在2020年的年底總資產(chǎn)(利潤+本金)可以翻一番.(參考數(shù)據(jù):lg2=0.3010,lg3=0.4771)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在平面四邊形ABCD中,$\overrightarrow{BA}•\overrightarrow{BC}=32$.
(1)若$\overrightarrow{BA}$與$\overrightarrow{BC}$的夾角為30°,求△ABC的面積S△ABC
(2)若$|{\overrightarrow{AC}}|=4,O$為AC的中點,G為△ABC的重心(三條中線的交點),且$\overrightarrow{OG}$與$\overrightarrow{OD}$互為相反向量,求$\overrightarrow{AD}•\overrightarrow{CD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的兩個焦點,PQ是經(jīng)過F1且垂直于x軸的雙曲線的弦,若∠PF2Q=90°,則雙曲線的離心率為( 。
A.2B.$2\sqrt{2}$C.$\sqrt{2}-1$D.$1+\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓錐的底面半徑為1,側(cè)面展開圖的圓心角為60°,則此圓錐的表面積為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案