【題目】已知函數(shù).
(1)討論的單調性;
(2)若有兩個極值點,證明:.
【答案】(1) 當時, 在上單調遞增;
在上單調遞減;時, 在上單調遞增;當時,在上單調遞減; 在上單調遞增.
(2)見解析.
【解析】分析:(1)由,分別討論當時,或討論導函數(shù)的正負從而可得函數(shù)的單調性;
(2)由(1)知,且為方程的兩個根,由根與系數(shù)的關系,其中,可化簡,令,進而求導求最值即可證得.
詳解:(1) .
令,,對稱軸為.
①當時,,所以在上單調遞增.
②當或時, .此時,方程兩根分別為,.
當時,,當時,,當,,所以在上單調遞增, 在上單調遞減.
當時,,當時,,當,, 所以在上單調遞減, 在上單調遞增.
綜上,當時, 在上單調遞增;
在上單調遞減;時, 在上單調遞增;當時,在上單調遞減; 在上單調遞增.
(2)由(1)知,且為方程的兩個根.
由根與系數(shù)的關系,其中.
于是
.
令,
,
所以在在上單調遞減,且.
∴,即,
又,.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) 的部分圖象如圖所示。
(1)求函數(shù)的解析式;
(2)設,且方程有兩個不同的實數(shù)根,求實數(shù)的取值范圍和這兩個根的和
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,.
(Ⅰ)若,求的極值;
(Ⅱ)若函數(shù)的兩個零點為,記,證明:.
【答案】(Ⅰ)極大值為,無極小值;(Ⅱ)證明見解析.
【解析】分析:(Ⅰ)先判斷函數(shù)在上的單調性,然后可得當時,有極大值,無極小值.(Ⅱ)不妨設,由題意可得,即,又由條件得,構造,令,則,利用導數(shù)可得,故得,又,所以.
詳解:(Ⅰ),
,
由得,
且當時,,即在上單調遞增,
當時,,即在上單調遞減,
∴當時,有極大值,且,無極小值.
(Ⅱ)函數(shù)的兩個零點為,不妨設,
,.
,
即,
又,,
,
.
令,則
,
在上單調遞減,
故,
,
即,
又,
.
點睛:(1)研究方程根的情況,可以通過導數(shù)研究函數(shù)的單調性、最大(小)值、函數(shù)的變化趨勢等,根據(jù)題目要求,畫出函數(shù)圖象的大體圖象,然后通過數(shù)形結合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現(xiàn).
(2)證明不等式時常采取構造函數(shù)的方法,然后通過判斷函數(shù)的單調性,借助函數(shù)的最值進行證明.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為:.
(Ⅰ)求直線的普通方程與曲線的直角坐標方程;
(Ⅱ)設直線與曲線交于不同的兩點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,(其中, 為自然對數(shù)的底數(shù), ……).
(1)令,若對任意的恒成立,求實數(shù)的值;
(2)在(1)的條件下,設為整數(shù),且對于任意正整數(shù), ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨創(chuàng)并且有效的計算工具,為我國古代數(shù)學的發(fā)展做出了很大貢獻.在算籌計數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校在學年期末舉行“我最喜歡的文化課”評選活動,投票規(guī)則是一人一票,高一(1)班44名學生和高一(7)班45名學生的投票結果如下表(無廢票):
語文 | 數(shù)學 | 外語 | 物理 | 化學 | 生物 | 政治 | 歷史 | 地理 | |
高一(1)班 | 6 | 9 | 7 | 5 | 4 | 5 | 3 | 3 | 2 |
高一(7)班 | 6 | 4 | 5 | 6 | 5 | 2 | 3 |
該校把上表的數(shù)據(jù)作為樣本,把兩個班同一學科的得票之和定義為該年級該學科的“好感指數(shù)”.
(Ⅰ)如果數(shù)學學科的“好感指數(shù)”比高一年級其他文化課都高,求的所有取值;
(Ⅱ)從高一(1)班投票給政治、歷史、地理的學生中任意選取位同學,設隨機變量為投票給地理學科的人數(shù),求的分布列和期望;
(Ⅲ)當為何值時,高一年級的語文、數(shù)學、外語三科的“好感指數(shù)”的方差最小?(結論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】新高考最大的特點就是取消文理分科,除語文、數(shù)學、外語之外,從物理、化學、生物、政治、歷史、地理這科中自由選擇三門科目作為選考科目.某研究機構為了了解學生對全文(選擇政治、歷史、地理)的選擇是否與性別有關,從某學校高一年級的1000名學生中隨機抽取男生,女生各人進行模擬選科.經(jīng)統(tǒng)計,選擇全文的人數(shù)比不選全文的人數(shù)少人.
(1)估計在男生中,選擇全文的概率.
(2)請完成下面的列聯(lián)表;并估計有多大把握認為選擇全文與性別有關,并說明理由;
附:,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com