設(shè)Sn是各項(xiàng)為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和,若S10=10,S20=30,則S40=
 
考點(diǎn):等比數(shù)列的前n項(xiàng)和
專題:等差數(shù)列與等比數(shù)列
分析:S10=10,S20=30,設(shè)S30=a,S40=b,由題意知10,30-10,a-30,b-a成等比數(shù)列,由此能求出S40
解答: 解:∵Sn是各項(xiàng)為正數(shù)的等比數(shù)列{an}的前n項(xiàng)和,
∴S10,S20-S10,S30-S20,S40-S30成等比數(shù)列,
∵S10=10,S20=30,設(shè)S30=a,S40=b,
∴10,30-10,a-30,b-a成等比數(shù)列,
∴a-30=40,解得a=70,
b-a=80,解得b=150.
∴S40=150.
故答案為:150.
點(diǎn)評(píng):本題考查數(shù)列的前40項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要注意等比數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是雙曲線
x2
16
-
y2
20
=1的焦點(diǎn),P是雙曲線上一點(diǎn).若P到F1的距離為9,則P到F2的距離等于( 。
A、0
B、17
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U={1,2,3,4,5},A={1,2,3},B={(x,y)|x∈A,y∈∁UA},則B中元素的個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(2x-1)=4x2,則f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線x2-
y2
b2
=1(b>0)的焦點(diǎn)到其漸近線的距離等于拋物線y2=4x的焦點(diǎn)到其準(zhǔn)線的距離,則該雙曲線的離心率e等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,5,8},B={1,3,5,8,13},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(8,
1
2
),則f(
1
64
)的值為( 。
A、3
B、
1
3
C、4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若m,n為兩條不重合的直線,α,β為兩個(gè)不重合的平面,給出下列四個(gè)命題:則真命題的個(gè)數(shù)是( 。
①若m∥α,n∥α,則m∥n;
②若m⊥α,n⊥β,且α∥β,則m∥n;
③若α⊥β,m⊥n,且m⊥α,則n⊥β;
④若α⊥β,m⊥α,則m∥β.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線垂直于y軸,求實(shí)數(shù)a的值;
(2)當(dāng)a>0時(shí),求函數(shù)f(|cosx|)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案