7.已知全集U=R,集合A=$\left\{{x\left|{y=\sqrt{2x-{x^2}}}\right.}\right\}$,B={y|y=2x,x∈R},則(∁UA)∩B=( 。
A.(2,+∞)B.(0,1]C.(1,2]D.(-∞,0)

分析 求出集合的等價條件,根據(jù)集合的基本運算進行求解即可.

解答 解:A=$\left\{{x\left|{y=\sqrt{2x-{x^2}}}\right.}\right\}$={x|2x-x2≥0}={x|x2-2x≤0}={x|0≤x≤2}=[0,2],
B={y|y=2x,x∈R}={y|y>0}=(0,+∞),
則∁UA=(-∞,0)∪(2,+∞),
(∁UA)∩B=(2,+∞),
故選:A

點評 本題主要考查集合的基本運算,求出集合的等價條件是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ln(x+1),g(x)=ex-1,
(Ⅰ)若F(x)=f(x)+px,求F(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意的x2>x1>0,比較f(x2)-f(x1)與g(x2-x1)的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在復(fù)平面上,已知復(fù)數(shù)z1與z2的對應(yīng)點關(guān)于直線y=x對稱,且滿足z1z2=9i,則|z1|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)x,y∈R,向量$\overrightarrow a$=(2,-4),$\overrightarrow b$=(x,1),$\overrightarrow c$=(1,y),且$\overrightarrow a$⊥$\overrightarrow b$,$\overrightarrow a$∥$\overrightarrow c$,則|$\overrightarrow b$+$\overrightarrow c$|=( 。
A.$\sqrt{5}$B.$\sqrt{10}$C.$2\sqrt{5}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點為F1(-3$\sqrt{2}$,0),且離心率為3,則雙曲線C的標準方程為$\frac{x^2}{2}-\frac{y^2}{16}=1$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow$-$\overrightarrow{a}$夾角為(  )
A.$\frac{5}{6}π$B.$\frac{2}{3}π$C.$\frac{1}{6}π$D.$\frac{1}{3}π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.過P(a,b)向圓(x-2)2+(y-3)2=1引切線PT,T為切點,若|PT|=|PO|(O為坐標原點),則切線|PT|的最小值為$\frac{{6\sqrt{13}}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)x1,x2是方程2x2-6x+3=0的兩個根,不解方程,求下列各式的值
(1)(x1-3)(x2-3);
(2)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}中,a1=1,an+1=$\frac{\sqrt{2}{a}_{n}}{\sqrt{{{a}_{n}}^{2}+2}}$(n∈N*
(1)證明{$\frac{1}{{{a}_{n}}^{2}}$}是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{{{a}_{n}}^{2}}$,數(shù)列{bn}的前n項和為Sn,已知存在正整數(shù)m,使得$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$<m對n∈N+恒成立,求m的最小值.

查看答案和解析>>

同步練習(xí)冊答案