16.設x1,x2是方程2x2-6x+3=0的兩個根,不解方程,求下列各式的值
(1)(x1-3)(x2-3);
(2)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$;
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$.

分析 由韋達定理得x1+x2=3,x1x2=$\frac{3}{2}$,
(1)由(x1-3)(x2-3)=x1x2-3(x1+x2)+9,能求出結果.
(2)由$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{{x}_{1}{x}_{2}}^{\;}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$,能求出結果.
(3)由x${\;}_{1}^{3}$+x${\;}_{2}^{3}$=(x1+x2)(${{x}_{1}}^{2}+{{x}_{2}}^{2}-{x}_{1}{x}_{2}$),能求出結果.

解答 解:∵x1,x2是方程2x2-6x+3=0的兩個根,
∴x1+x2=3,x1x2=$\frac{3}{2}$,
(1)(x1-3)(x2-3)=x1x2-3(x1+x2)+9=$\frac{3}{2}-9+9$=$\frac{3}{2}$.
(2)$\frac{1}{{x}_{1}^{2}}$+$\frac{1}{{x}_{2}^{2}}$=$\frac{{{x}_{1}}^{2}+{{x}_{2}}^{2}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$=$\frac{({x}_{1}+{x}_{2})^{2}-2{{x}_{1}{x}_{2}}^{\;}}{{{x}_{1}}^{2}{{x}_{2}}^{2}}$
=$\frac{9-3}{\frac{9}{4}}$=$\frac{8}{3}$.
(3)x${\;}_{1}^{3}$+x${\;}_{2}^{3}$=(x1+x2)(${{x}_{1}}^{2}+{{x}_{2}}^{2}-{x}_{1}{x}_{2}$)]
=3[(x1+x22-3x1x2
=3(9-$\frac{9}{2}$)
=$\frac{27}{2}$.

點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意韋達定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.甲、乙同時炮擊一架敵機,已知甲擊中敵機的概率為0.3,乙擊中敵機的概率為0.5,敵機被擊中的概率為0.65.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知全集U=R,集合A=$\left\{{x\left|{y=\sqrt{2x-{x^2}}}\right.}\right\}$,B={y|y=2x,x∈R},則(∁UA)∩B=( 。
A.(2,+∞)B.(0,1]C.(1,2]D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設函數(shù)f(x)=sinωx(ω>0),將y=f(x)的圖象向右平移$\frac{π}{6}$個單位長度后,所得圖象關于y軸對稱,則ω的最小值是(  )
A.$\frac{1}{3}$B.3C.6D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若一個圓錐的軸截面是邊長為2的等邊三角形,則這個圓錐的表面積是( 。
A.B.3$\sqrt{3}$πC.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=x2-ax+2對任意x∈[0,1],都有f(x)>0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知f(α)=($\frac{cos\frac{α}{2}}{sin\frac{α}{2}}$-tan$\frac{α}{2}$)•$\frac{1-cos2α}{2sinα}$.求f($\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知A={x|(m-1)x+1=0},B={x|x2-2x-3=0}
(1)若m=2時,求A∩B;  
(2)若A⊆B,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.當x∈(0,+∞),冪函數(shù)y=(m2-m-1)xm為減函數(shù),則實數(shù)m的值為( 。
A.0B.1C.2D.-1

查看答案和解析>>

同步練習冊答案