分析 Sn=2n-1,可得a1=S1=1,當(dāng)n≥2時(shí),an=Sn-Sn-1.則$\frac{{a}_{n}}{{a}_{n}•{S}_{n}+{a}_{6}}$=$\frac{1}{{2}^{n}+\frac{64}{{2}^{n}}-1}$,再利用基本不等式的性質(zhì)即可得出.
解答 解:∵Sn=2n-1,∴a1=S1=2-1=1,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1.
則$\frac{{a}_{n}}{{a}_{n}•{S}_{n}+{a}_{6}}$=$\frac{{2}^{n-1}}{{2}^{n-1}({2}^{n}-1)+{2}^{5}}$=$\frac{1}{{2}^{n}+\frac{64}{{2}^{n}}-1}$≤$\frac{1}{2\sqrt{{2}^{n}•\frac{64}{{2}^{n}}}-1}$=$\frac{1}{15}$,當(dāng)且僅當(dāng)n=3時(shí)取等號(hào).
∴$\frac{{a}_{n}}{{a}_{n}•{S}_{n}+{a}_{6}}$的最大值為$\frac{1}{15}$.
故答案為:$\frac{1}{15}$.
點(diǎn)評(píng) 本題考查了遞推關(guān)系、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {5} | C. | {1,2,4,5} | D. | {3,4,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com