【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點,x軸的正半軸為極軸的極坐標系.
(1)求C1 , C2的極坐標方程;
(2)射線 與C1的異于原點的交點為A,與C2的交點為B,求|AB|.

【答案】
(1)解:將 代入曲線C1方程:(x﹣1)2+y2=1,

可得曲線C1的極坐標方程為ρ=2cosθ,

曲線C2的普通方程為 ,將 代入,

得到C2的極坐標方程為ρ2(1+sin2θ)=2


(2)解:射線的極坐標方程為 ,與曲線C1的交點的極徑為 ,

射線 與曲線C2的交點的極徑滿足 ,解得

所以


【解析】(1)將 代入曲線C1方程可得曲線C1的極坐標方程.曲線C2的普通方程為 ,將 代入,得到C2的極坐標方程.(2)射線的極坐標方程為 ,與曲線C1的交點的極徑為ρ1 , 射線 與曲線C2的交點的極徑滿足 ,解得ρ2 . 可得|AB|=|ρ1﹣ρ2|.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)雙曲線Cy2=1(a>0)與直線lxy=1相交于兩個不同的點A,B.

(1)求雙曲線C的離心率e的取值范圍;

(2)設(shè)直線ly軸的交點為P,且,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線y=k(x+ )與曲線y= 恰有兩個不同交點,記k的所有可能取值構(gòu)成集合A;P(x,y)是橢圓 上一動點,點P1(x1 , y1)與點P關(guān)于直線y=x+l對稱,記 的所有可能取值構(gòu)成集合B,若隨機地從集合A,B中分別抽出一個元素λ1 , λ2 , 則λ1>λ2的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題13分)已知數(shù)列滿足:,,且.記

集合

)若,寫出集合的所有元素;

)若集合存在一個元素是3的倍數(shù),證明:的所有元素都是3的倍數(shù);

)求集合的元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的離心率e= ,右頂點、上頂點分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點B且斜率為k的動直線l與橢圓C的另一個交點為M, =λ( ),若點N在圓O上,求正實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱所有的棱長均為1,C.

1求證:;

2,求直線和平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線與直線相交于AB兩點.

1)求證:;

2)當的面積等于時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖.

表示臺機器在三年使用期內(nèi)需更換的易損零件數(shù),表示臺機器在購買易損零件上所需的費用(單位:元),表示購機的同時購買的易損零件數(shù).

(1)若,求的函數(shù)解析式;

(2)若要求需更換的易損零件數(shù)不大于的頻率不小于,求的最小值;

(3)假設(shè)這臺機器在購機的同時每臺都購買個易損零件,或每臺都購買個易損零件,分別計算這臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買臺機器的同時應(yīng)購買個還是個易損零件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知某三棱錐的三視圖如圖所示,正視圖和俯視圖都是等腰直角三角形,則該三棱錐中最長的棱長為(
A.
B.
C.
D.2

查看答案和解析>>

同步練習冊答案