A. | 等腰三角形 | B. | 正三角形 | C. | 直角三角形 | D. | 鈍角三角形 |
分析 由$\sqrt{3}$(acosB+bcosA)=2csinC及正弦定理可得$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,結(jié)合sinC>0,化簡可得sinC,由a+b=8,利用基本不等式可得ab≤16,(當且僅當a=b=4成立),由△ABC的面積的最大值S△ABC=$\frac{1}{2}$absinC≤4$\sqrt{3}$,即可解得a=b=4,從而得解△ABC的形狀為等腰三角形.
解答 解:∵$\sqrt{3}$(acosB+bcosA)=2csinC,
∴$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sinC=2sin2C,且sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵a+b=8,可得:8≥2$\sqrt{ab}$,解得:ab≤16,(當且僅當a=b=4成立)
∵△ABC的面積的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}×16×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
∴a=b=4,
則此時△ABC的形狀為等腰三角形.
故選:A.
點評 本題主要考查了正弦定理,三角形面積公式,基本不等式的應用,考查了轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {a|a≥4} | B. | {a|a>4或a=0} | C. | {a|0≤a≤4} | D. | {a|a≥4或a=0} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{n}{n+1}$ | B. | $\frac{4n}{n+1}$ | C. | $\frac{3n}{n+1}$ | D. | $\frac{5n}{n+1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{3}$或2$\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 4$\sqrt{3}$π | C. | 12π | D. | $\frac{8\sqrt{3}}{3}$π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com