8.已知數(shù)列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,…,$\frac{1}{10}$+$\frac{2}{10}$+$\frac{3}{10}$+…+$\frac{9}{10}$,…,若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,那么數(shù)列{bn}的前n項和Sn為(  )
A.$\frac{n}{n+1}$B.$\frac{4n}{n+1}$C.$\frac{3n}{n+1}$D.$\frac{5n}{n+1}$

分析 先確定數(shù)列{an}的通項,再確定數(shù)列{bn}的通項,利用裂項法可求數(shù)列的和.

解答 解:由題意,數(shù)列{an}的通項為an=$\frac{1+2+…+n}{n+1}$=$\frac{n}{2}$,
∴bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=4($\frac{1}{n}$-$\frac{1}{n+1}$)
∴Sn=4(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=4(1-$\frac{1}{n+1}$)=$\frac{4n}{n+1}$
故選B.

點評 本題考查數(shù)列的通項,考查裂項法求數(shù)列的和,考查學生的計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知a>0,集合A={x|ax2-2x+2a-1=0},B={y|y=log2(x+$\frac{a}{x}$-4)},p:A=∅,q:B=R.
(1)若p∧q為真,求a的最大值;
(2)若p∧q為為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設集合A={x|2a-1≤x≤a+3},集合B={x|x<-1或x>5}.
(1)當a=-2時,求A∩B;
(2)若A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)計算:-$\frac{5}{2}$log34+log3$\frac{32}{9}$-($\frac{1}{64}$)${\;}^{-\frac{2}{3}}$
(2)已知2a=5b=100,求$\frac{1}{a}$+$\frac{1}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=4sin2x是(  )
A.周期為$\frac{π}{2}$的奇函數(shù)B.周期為$\frac{π}{2}$的偶函數(shù)
C.周期為π的奇函數(shù)D.周期為π的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.不等式x(x-1)<2的解集是( 。
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x>1或x<-2}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在△ABC中,角A,B,C所對的邊分別為a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=8,且△ABC的面積的最大值為4$\sqrt{3}$,則此時△ABC的形狀為( 。
A.等腰三角形B.正三角形C.直角三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知數(shù)列{an}中,a1=5,an=2an-1+2n-1(n≥2,n∈N*
(1)證明:數(shù)列{$\frac{{{a_n}-1}}{2^n}$}為等差數(shù)列,并求出數(shù)列{an}的通項公式;
(2)令bn=lg$\frac{{{a_n}-1}}{n}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知0<α<β<π,且cosαcosβ=$\frac{1}{5}$,sinαsinβ=$\frac{2}{5}$,則tan(β-α)的值為$\frac{4}{3}$.

查看答案和解析>>

同步練習冊答案