A. | $\frac{n}{n+1}$ | B. | $\frac{4n}{n+1}$ | C. | $\frac{3n}{n+1}$ | D. | $\frac{5n}{n+1}$ |
分析 先確定數(shù)列{an}的通項,再確定數(shù)列{bn}的通項,利用裂項法可求數(shù)列的和.
解答 解:由題意,數(shù)列{an}的通項為an=$\frac{1+2+…+n}{n+1}$=$\frac{n}{2}$,
∴bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$=4($\frac{1}{n}$-$\frac{1}{n+1}$)
∴Sn=4(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=4(1-$\frac{1}{n+1}$)=$\frac{4n}{n+1}$
故選B.
點評 本題考查數(shù)列的通項,考查裂項法求數(shù)列的和,考查學生的計算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 周期為$\frac{π}{2}$的奇函數(shù) | B. | 周期為$\frac{π}{2}$的偶函數(shù) | ||
C. | 周期為π的奇函數(shù) | D. | 周期為π的偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<1} | B. | {x|-1<x<2} | C. | {x|x>1或x<-2} | D. | {x|x>2或x<-1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 等腰三角形 | B. | 正三角形 | C. | 直角三角形 | D. | 鈍角三角形 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com