如果數(shù)列滿足:且,則稱數(shù)列為階“歸化數(shù)列”.
(1)若某4階“歸化數(shù)列”是等比數(shù)列,寫出該數(shù)列的各項;
(2)若某11階“歸化數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(3)若為n階“歸化數(shù)列”,求證:.
(1)或;(2)或;(3)證明見解析.
【解析】
試題分析:(1)等比數(shù)列是4階“歸化數(shù)列”,則有,這樣,于是,從而,,以后各項依次可寫出;(2)等差數(shù)列是11階“歸化數(shù)列”,則,,這樣有,知當時,,當時,,由此可得的通項公式分別為或;(3)對階“歸化數(shù)列”,從已知上我們只能知道在中有正有負,因此為了求,我們可以設是正的,是負的,這樣,,
證畢.
(1)設成公比為的等比數(shù)列,顯然,則由,
得,解得,由得,解得,
所以數(shù)列或為所求四階“歸化數(shù)列”; 4分
(2)設等差數(shù)列的公差為,由,
所以,所以,即, 6分
當時,與歸化數(shù)列的條件相矛盾,
當時,由,所以,
所以 8分
當時,由,所以,
所以(n∈N*,n≤11),
所以(n∈N*,n≤11), 10分
(3)由已知可知,必有ai>0,也必有aj<0(i,j∈{1,2, ,n,且i≠j).
設為諸ai中所有大于0的數(shù),為諸ai中所有小于0的數(shù).
由已知得X=++ +=,Y= + + +=-.
所以. 16分
考點:新定義,新定義概念的應用,等差數(shù)列與等比數(shù)列的通項和前項和公式,不等式的放縮法.
科目:高中數(shù)學 來源:2013-2014學年江蘇省蘇、錫、常、鎮(zhèn)四市高三教學情況調(diào)查(一)理科數(shù)學試卷(解析版) 題型:解答題
一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現(xiàn)要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省鹽城市高三第三次模擬考試數(shù)學試卷(解析版) 題型:解答題
已知直線在矩陣對應的變換作用下變?yōu)橹本.
(1)求實數(shù),的值;
(2)若點在直線上,且,求點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省鹽城市高三第三次模擬考試數(shù)學試卷(解析版) 題型:填空題
某工廠甲、乙、丙三個車間生產(chǎn)同一產(chǎn)品,數(shù)量分別為120件,90件,60
件. 為了解它們的產(chǎn)品質(zhì)量是否有顯著差異,用分層抽樣方法抽取了一個容量
為的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了4件,則 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三5月信息卷理科數(shù)學試卷(解析版) 題型:填空題
已知數(shù)列是各項均不為的等差數(shù)列,為其前項和,且滿足.若不等式對任意的恒成立,則實數(shù)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三5月信息卷文科數(shù)學試卷(解析版) 題型:填空題
已知直線,若對任意,直線與一定圓相切,則該定圓方程為 .
查看答案和解析>>
科目:高中數(shù)學 來源:2013-2014學年江蘇省淮安市高三Ⅲ級部決戰(zhàn)四統(tǒng)測二文科數(shù)學試卷(解析版) 題型:填空題
已知直線與圓交于不同的兩點,是坐標原點,且有,則的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com