已知函數(shù)y=lnx的圖象上三點(diǎn)A,B,C的橫坐標(biāo)依次為m,m+1,m+2,記△ABC的面積為S=f(m).
(1)求函數(shù)S=f(m)的解析式;
(2)判斷并證明函數(shù)S=f(m)的單調(diào)性.
考點(diǎn):函數(shù)與方程的綜合運(yùn)用,函數(shù)單調(diào)性的判斷與證明,對(duì)數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)過A,B,C,分別作AA1,BB1,CC1垂直于x軸,垂足為A1,B1,C1,則S=S梯形AA1B1B+S梯形BB1C1C-S梯形AA1C1C,進(jìn)而得出函數(shù)f(t)的表達(dá)式.
(2)由(1)中得f( m),先根據(jù) v>1,推斷v=t2+4t為增函數(shù),進(jìn)而推斷函數(shù)f(t)為減函數(shù).
解答: 解:(1)過A,B,C,分別作AA1,BB1,CC1垂直于x軸,垂足為A1,B1,C1,
則S=f(m)=S梯形ABB′A′+S梯形CC′BB′-S梯形ACC′A′=
1
2
[lnm+lm(m+1)]×1+
1
2
[ln(m+1)+ln(m+2)]×1-
1
2
[lnm+ln(m+2)]×2.
f(m)=
1
2
ln(1+
1
m2+2m
)(m>0)

(2)f(m)=
1
2
ln(1+
1
m2+2m
)(m>0)
,在(0,+∞)上是減函數(shù).
證明:∵v=m2+2m在[-1,+∞)上是增函數(shù),
∴m>0時(shí),m2+2m是增函數(shù),
1
m2+2m
是減函數(shù).
所以復(fù)合函數(shù)f(m)=
1
2
ln(1+
1
m2+2m
)(m>0)
,在(0,+∞)上是減函數(shù).
點(diǎn)評(píng):本題主要考查了函數(shù)單調(diào)性的應(yīng)用.常涉及利用單調(diào)性求函數(shù)的值域和最值等問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,底面ABCD是正方形,E,F(xiàn)分別是PC,AB的中點(diǎn),平面PAD⊥底面ABCD
(1)求證:EF∥平面PAD;
(2)求證:AB⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x•ecosx(x∈[-π,π])的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:(a-1)x-2y+b=0,l2:ax+(b-4)y+3=0.若l1⊥l2且l1過點(diǎn)(1,3).
(Ⅰ)當(dāng)a>0時(shí),求l1,l2方程;
(Ⅱ)若光線沿直線l1射入,遇直線x=0后反射,求反射光線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)箱子里有4張分別寫有字樣“優(yōu)”、“良”、“中”、“差”完全一樣的字牌,每次取出一張,記下它的字樣后再放回盒子中,共取3次,則取得有字樣為“優(yōu)”的取法有( 。
A、37B、36C、35D、34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=(
1
3
x-1,x∈[-1,2]的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知x+x-1=3求x2+x-2的值.
(2)化簡(jiǎn)(2a 
2
3
b 
1
2
)(-6a 
1
2
b 
1
3
)÷(-3a 
1
6
b 
5
6
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),g(x),φ(x)如查存在實(shí)數(shù)a,b使得φ(x)=a•f(x)+b•g(x),那么稱φ(x)為f(x),g(x)的線性組合函數(shù),如對(duì)于f(x)=x+1,g(x)=x2+2x,φ(x)=2-x2存在a=2,b=-1使得φ(x)=2f(x)=g(x),此時(shí)φ(x)就是f(x),g(x)的線性組合函數(shù).
(Ⅰ)設(shè)f(x)=x2+1,g(x)=x2-x,φ(x)=x2-2x+3,試判斷φ(x)是否為f(x),g(x)的線性組合函數(shù)?關(guān)說明理由;
(Ⅱ)設(shè)f(x)=log2x,g(x)=log 
1
2
x,a=2,b=1,線性組合函數(shù)為φ(x),若不等式3φ2(x)-2φ(x)+m<0在x∈[
2
,4]上有解,求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)f(x)=x,g(x)=
1
x
(1≤x≤9),取a=1,b>0,線性組合函數(shù)φ(x)使φ(x)≥b恒成立,求b的取值范圍,(可利用函數(shù)y=x+
k
x
(常數(shù)k>0)在(0,
k
]上是減函數(shù),在[
k
,+∞)上是增函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x -
2
3
(x<0)的反函數(shù)是f-1(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案