10.設(shè)計(jì)求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{50}$的值的算法,并畫(huà)出程序框圖.

分析 程序的功能是計(jì)算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{50}$的值,由循環(huán)變量的初值為1,累加器初值為0,由此能畫(huà)出程序框圖.

解答 解:∵程序的功能是計(jì)算1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{50}$的值,
由循環(huán)變量的初值為1,累加器初值為0,
∴S=S+$\frac{1}{i}$,
由循環(huán)變量的步長(zhǎng)為1.
畫(huà)出程序框圖:

點(diǎn)評(píng) 本題考查算法的設(shè)計(jì),考查程序框圖的作法,是中檔題,解題時(shí)要認(rèn)真審題,注意程序框圖的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={(x,y)|y=x2,x>0},B={y|y=2x,x>0},則A∩B=( 。
A.B.(1,+∞)C.(2,4)D.{(2,4),(4,16)}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.判斷下列命題的為真命題.( 。
A.若a>b,c>d,則ac>bdB.若a>b>0,c>d>0,則$\frac{a}{c}$>$\fracflpo8n9$
C.若a>b,c<d,則a-c>b-dD.若a>b,則an>bn,$\root{n}{a}$>$\root{n}$(n∈N+且n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)f(x)=x+sinx,(x∈R),則下列說(shuō)法錯(cuò)誤的是( 。
A.f(x)是奇函數(shù)B.f(x)在R上存在最值C.f(x)的值域?yàn)镽D.f(x)不是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.從1,2,3,4,5,6這六個(gè)數(shù)字中隨機(jī)取出兩個(gè)數(shù)字.
(1)求“將取出的這兩個(gè)數(shù)字組成的兩位數(shù)大于30”的概率;
(2)記取出的兩個(gè)數(shù)字之差的絕對(duì)值為X,求X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)i是虛數(shù)單位,若復(fù)數(shù)z=$\frac{15-5i}{(2+i)^{2}}$,且ω=z2+3$\overline{z}$-1,求ω在復(fù)平面中所對(duì)應(yīng)的點(diǎn)的坐標(biāo);
(2)i是虛數(shù)單位,若復(fù)數(shù)z滿(mǎn)足方程z•$\overline{z}$-2zi=1+2i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知向量$\overrightarrow a$=(2,3),$\overrightarrow b$=(4,y),若$\overrightarrow{a}$∥$\overrightarrow$,則y=(  )
A.$-\frac{8}{3}$B.6C.$\frac{8}{3}$D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知全集U=R,集合A={x|0≤x<4},B={x|y=lg(4-x2)},則A∩B=( 。
A.(0,4)B.{0,2}C.(0,2]D.[0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額和利潤(rùn)額資料如表
商店名稱(chēng)ABCDE
銷(xiāo)售額x(千萬(wàn)元)35679
利潤(rùn)額y(百萬(wàn)元)23345
(1)畫(huà)出散點(diǎn)圖.觀察散點(diǎn)圖,說(shuō)明兩個(gè)變量有怎樣的相關(guān)性;
(2)用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷(xiāo)售額x的回歸直線(xiàn)方程;
(3)當(dāng)銷(xiāo)售額為8(千萬(wàn)元)時(shí),估計(jì)利潤(rùn)額的大。
(附:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案