15.(1)i是虛數(shù)單位,若復數(shù)z=$\frac{15-5i}{(2+i)^{2}}$,且ω=z2+3$\overline{z}$-1,求ω在復平面中所對應的點的坐標;
(2)i是虛數(shù)單位,若復數(shù)z滿足方程z•$\overline{z}$-2zi=1+2i,求復數(shù)z.

分析 (1)利用復數(shù)的運算法則、幾何意義即可得出.
(2)利用復數(shù)的運算法則、復數(shù)相等即可得出.

解答 解:(1)復數(shù)z=$\frac{15-5i}{(2+i)^{2}}$=$\frac{15-5i}{3+4i}$=$\frac{(15-5i)(3-4i)}{(3+4i)(3-4i)}$=$\frac{25-75i}{25}$=1-3i,
∴ω=z2+3$\overline{z}$-1=(1-3i)2+3(1+3i)-1=-6+3i,
∴ω在復平面中所對應的點的坐標為(-6,3).
(2)設z=a+bi(a,b∈R),則$z•\overline{z}$=a2+b2,
即a2+b2+2b-2ai=1+2i,
由$\left\{\begin{array}{l}{-2a=2}\\{{a}^{2}+^{2}+2b=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-1}\\{b=0}\end{array}\right.$,或$\left\{\begin{array}{l}{a=-1}\\{b=-2}\end{array}\right.$,
∴z=-1或z=-1-2i.

點評 本題考查了復數(shù)的運算法則、復數(shù)相等、幾何意義,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知D是等腰直角三角形△ABC斜邊BC的中點,P是平面ABC外一點,PC⊥平面ABC,求證:AD⊥平面PBC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.數(shù)列{an}的通項公式an=n2-2λn+1,若數(shù)列{an}為遞增數(shù)列,則λ的取值范圍是(  )
A.(-∞,1)B.(-∞,1]C.$(-∞,\frac{3}{2})$D.$(-∞,\frac{3}{2}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,四棱錐P-ABCD中,已知PA⊥面ABCD,E為PD的中點,AD∥BC,AB⊥AD,AD=2AB=2BC.求證:
(1)CE∥面PAB;
(2)DC⊥面PAC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.設計求1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{50}$的值的算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列各選項中的M與P表示同一個集合的是(  )
A.M={x∈R|x2+0.01=0},P={x|x2=0}B.M={(x,y)|y=x2,x∈R},P={y|y=x2,x∈R}
C.M={y|y=t2+1,t∈R},P={t|t=(y-1)2+1,y∈R}D.M={x|x=2k,k∈Z},P={x|x=4k+2,k∈Z}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知集合A={x|x2+2015x-a<0},若1∉A,則實數(shù)a的取值范圍為( 。
A.a≤2016B.a>2016C.a≤2015D.a>2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.數(shù)列 1,$\frac{3}{{2}^{2}}$,$\frac{4}{{2}^{3}}$,$\frac{5}{{2}^{4}}$,…,$\frac{n+1}{{2}^{n}}$ 的前n項和等于(  )
A.Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-1}}$B.Sn=3-$\frac{n+1}{{2}^{n}}$-1-$\frac{1}{{2}^{n-2}}$
C.Sn=3-$\frac{n+1}{{2}^{n}}$-$\frac{1}{{2}^{n-2}}$D.Sn=3-n2n--$\frac{1}{{2}^{n-2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.小波以游戲的方式?jīng)Q定是去打球、唱歌還是去下棋.游戲規(guī)則為以O為起點,再從A1,A2,A3,A4,A5,A6(如圖)這6個點中任取兩點分別為終點得到兩個向量,記住這兩個向量的數(shù)量積為X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.
(1)寫出數(shù)量積X的所有可能取值
(2)分別求小波去下棋的概率和不去唱歌的概率.

查看答案和解析>>

同步練習冊答案