分析 利用二次函數(shù)在x∈[0,3]的單調(diào)性的性質(zhì)即可求得答案.
解答 解;∵f(x)=x2-2x+2=(x-1)2+1,
∴其對稱軸x=1穿過閉區(qū)間[0,3],
∴函數(shù)在x∈[0,3]時,f(x)min=f(1)=1,
又f(x)在[0,1]上遞減,在[1,3]遞增,
f(0)=2,f(3)=5,f(0)<f(3),
∴函數(shù)在x∈[0,3]時,f(x)max=5,
∴該函數(shù)的值域為[1,5].
故答案為:[1,5].
點評 本題考查二次函數(shù)的性質(zhì),著重考查二次函數(shù)的單調(diào)性與最值,考查分析解決問題的能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $1,-\frac{4}{3}$ | B. | $4,-\frac{4}{3}$ | C. | $4,\frac{4}{3}$ | D. | $\frac{4}{3},-4$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${a_n}={10^n}-8$ | B. | ${a_n}=\frac{{{{10}^n}-1}}{9}$ | C. | ${a_n}={2^n}-1$ | D. | ${a_n}=\frac{{2({{{10}^n}-1})}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{12}$ | C. | $\frac{1}{4}$或$-\frac{1}{12}$ | D. | $-\frac{1}{4}$或$\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 把函數(shù)f(x)圖象上各點的橫坐標縮短到原來的一半(縱坐標不變),再向右平移$\frac{π}{4}$個單位長度,可得到函數(shù)g(x)的圖象 | |
B. | 兩個函數(shù)的圖象均關(guān)于直線$x=-\frac{π}{4}$對稱 | |
C. | 兩個函數(shù)在區(qū)間$(-\frac{π}{4},\frac{π}{4})$上都是單調(diào)遞增函數(shù) | |
D. | 函數(shù)y=g(x)在[0,2π]上只有4個零點 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com