分析 (1)利用f(-x)=-f(x),求出q,利用$\frac{5}{2}<f(2)<3,p∈Z$,求出p;
(2)利用導數(shù)的方法,判斷、證明函數(shù)f(x)在(-∞,-2)上的單調(diào)性.
解答 解:(1)∵$f(x)=\frac{{p{x^2}+8}}{3x+q}$是奇函數(shù),
∴f(-x)=-f(x),即$\frac{p{x}^{2}+8}{-3x+q}$=-$\frac{p{x}^{2}+8}{3x+q}$,∴q=0.
∵$\frac{5}{2}<f(2)<3,p∈Z$,
∴$\frac{5}{2}$<$\frac{4p+8}{6}$<3,∴p=2;
(2)函數(shù)f(x)在(-∞,-2)上單調(diào)遞增,證明如下:
f(x)=$\frac{2{x}^{2}+8}{3x}$=2x+$\frac{8}{3x}$,f′(x)=2-$\frac{8}{3{x}^{2}}$,
∵x<-2,∴f′(x)>0,
∴函數(shù)f(x)在(-∞,-2)上單調(diào)遞增.
點評 本題考查函數(shù)的奇偶性、單調(diào)性,考查導數(shù)知識的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (3,1) | B. | (1,3) | C. | $(\frac{1}{m},-3m)$ | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com