16.已知函數(shù)f(x)=4$\sqrt{3}$sinxcosx-4sin2x+1.
(1)求函數(shù)f(x)的最大值及此時(shí)x的值;
(2)在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且對(duì)f(x)定義域中的任意的x都有f(x)≤f(A),若a=2,求$\overrightarrow{AB}$$•\overrightarrow{AC}$的最大值.

分析 (1)利用兩角和與二倍角公式化簡(jiǎn)函數(shù)f(x)=4$\sqrt{3}$sinxcosx-4sin2x+1為y=$4sin(2x+\frac{π}{6})-1$.后求函數(shù)f(x)的最大值及此時(shí)x的值;
(2)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,且對(duì)f(x)定義域中的任意的x都有f(x)≤f(A),推出f(A)是f(x)的最大值及A∈(0,π),求出A,通過(guò)余弦定理,和基本不等式確定bc的范圍,然后求出$\overrightarrow{AB}$$•\overrightarrow{AC}$的表達(dá)式,即可求出它的最大值.

解答 解:f(x)=4$\sqrt{3}$sinxcosx-4sin2x+1=$2\sqrt{3}sin2x-4×\frac{1-cos2x}{2}+1$
=$2\sqrt{3}sin2x+2cos2x-1$=$4(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x)-1$
=$4sin(2x+\frac{π}{6})-1$;
當(dāng)$2x+\frac{π}{6}=2kπ+\frac{π}{2}$,即x=$\frac{π}{6}+kπ,k∈Z$時(shí),f(x)max=3;
(2)由f(A)是f(x)的最大值及A∈(0,π)得到,A=$\frac{π}{6}$,
將a=2,A=$\frac{π}{6}$代入b2+c2-a2=2bccosA,可得$^{2}+{c}^{2}-4=\sqrt{3}bc$,
又∵b2+c2≥2bc,∴$\sqrt{3}$bc≥2bc-4,則bc≤$\frac{4}{2-\sqrt{3}}$=4(2+$\sqrt{3}$),
∴$\overrightarrow{AB}$$•\overrightarrow{AC}$=bccosA=$\frac{\sqrt{3}}{2}$bc≤6+4$\sqrt{3}$,當(dāng)且僅當(dāng)b=c時(shí),$\overrightarrow{AB}$$•\overrightarrow{AC}$最大,最大值為6+4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查三角函數(shù)的最值,平面向量數(shù)量積的坐標(biāo)表示,基本不等式的應(yīng)用,二倍角和兩角和的正弦函數(shù)的應(yīng)用是解題的關(guān)鍵,解答(2)的關(guān)鍵是挖掘f(A)是f(x)的最大值,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知集合A={x∈R|-1<x<1},B={x∈R|0≤x≤3},則A∪B=( 。
A.{x|0≤x<1}B.{x|1<x≤3}C.{x|-1<x≤3}D.{x|x<-1,或x≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=x3+ax2+1的對(duì)稱中心的橫坐標(biāo)為x0(x0>0)且f(x)有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,0)B.(-∞,-$\frac{3\root{3}{2}}{2}$)C.(0,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如表統(tǒng)計(jì)資料:
x23456
y2.23.85.56.57.0
若由資料知,y對(duì)x呈線性相關(guān)關(guān)系,試求:
(Ⅰ)請(qǐng)畫(huà)出表數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)請(qǐng)根據(jù)表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$y=\widehatbx+\widehata$;
(Ⅲ)計(jì)算出第2年和第6年的殘差.(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若$\int_0^k{({2x+4})dx=12}$,則k=( 。
A.3B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=nx-xn,x∈R,其中n∈N*,n≥2.
(1)討論f(x)的單調(diào)性;
(2)設(shè)曲線y=f(x)與x軸正半軸的交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為y=g(x),求證:對(duì)于任意的正實(shí)數(shù)x,都有f(x)≤g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.給出下列命題:
①函數(shù)y=tan x的圖象關(guān)于點(diǎn)($\frac{kπ}{2}$,0)(k∈Z)對(duì)稱;
②函數(shù)f(x)=sin|x|是最小正周期為π的周期函數(shù);
③函數(shù)y=cos2x+sin x最小值為-1;
④設(shè)θ為第二象限的角,則tan $\frac{θ}{2}$>cos$\frac{θ}{2}$,且sin$\frac{θ}{2}$>cos$\frac{θ}{2}$.
其中正確的命題序號(hào)是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x+$\frac{3}{4}$)=f(x-$\frac{3}{4}$),當(dāng)x∈[$\frac{1}{2}$,2]時(shí),f(x)=|log2x|,則方程f(x)=logπx在[$\frac{1}{2}$,5]的實(shí)根個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.國(guó)內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如下2×2列聯(lián)表:
運(yùn)動(dòng)時(shí)間
性別
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生36
女生26
合計(jì)100
(1)請(qǐng)根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運(yùn)動(dòng)達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

同步練習(xí)冊(cè)答案