分析 (1)由f(x)=nx-xn,可得f′(x),分n為奇數(shù)和偶數(shù)兩種情況利用導數(shù)即可得函數(shù)的單調(diào)性;
(2)設(shè)點P的坐標為(x0,0),則可求x0=n${\;}^{\frac{1}{n-1}}$,f′(x0)=n-n2,可求g(x)=f′(x0)(x-x0),F(xiàn)′(x)=f′(x)-f′(x0).由f′(x)=-nxn-1+n在(0,+∞)上單調(diào)遞減,可求F(x)在∈(0,x0)內(nèi)單調(diào)遞增,在(x0,+∞)上單調(diào)遞減,即可得證.
解答 解:(1)由f(x)=nx-xn,可得f′(x)=n-nxn-1=n(1-xn-1),其中n∈N•,且n≥2.
下面分兩種情況討論:
①當n為奇數(shù)時,令f′(x)=0,解得x=1,或x=-1,當x變化時,f′(x),f(x)的變化情況如下表:
x | (-∞,-1) | (-1,1) | (1,+∞) |
f′(x) | - | + | - |
f(x) | 遞減 | 遞增 | 遞減 |
點評 本小題主要考查導數(shù)的運算、導數(shù)的幾何意義、利用導數(shù)研究函數(shù)的性質(zhì)、證明不等式等基礎(chǔ)知識和方法,考查分類討論思想、函數(shù)思想和化歸思想,考查綜合分析問題和解決問題的能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $\frac{4}{3}$ | C. | 7+$\sqrt{5}$ | D. | 5+2$\sqrt{2}$+$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2) | B. | (2-$\sqrt{3}$,1) | C. | (2-$\sqrt{3}$,2+$\sqrt{3}$) | D. | (1,2+$\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com