5.為了研究家用轎車在高速公路上的車速情況,交通部門對100名家用轎車駕駛員進行調查,得到其在高速公路上行駛時的平均車速情況為:在55名男性駕駛員中,平均車速超過100km/h的有45人,不超過100km/h的有10人;在45名女性駕駛員中,平均車速超過100km/h的有25人,不超過100km/h的有20人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有99.5%的把握認為平均車速超過100km/h與性別有關;
平均車速超過100km/h人數(shù)平均車速不超過100km/h人數(shù)合計
男性駕駛人數(shù)451055
女性駕駛人數(shù)252045
合計7030100
(Ⅱ)在被調查的駕駛員中,按分層抽樣的方法從平均車速不超過100km/h的人中抽取6人,再從這6人中采用簡單隨機抽樣的方法隨機抽取2人,求這2人恰好為1名男生、1名女生的概率.
參考公式與數(shù)據(jù):k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(k2≥k00.1500.1000.0500.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828

分析 (Ⅰ)根據(jù)題目中的數(shù)據(jù),完成列聯(lián)表,求出K2=8.13>7.879,從有99.5%的把握認為平均車速超過100km/h與性別有關.
(Ⅱ)由題意抽取6人中,女性4人,男性2人,分別設為a1,a2,a3,a4和b1,b2,從這6人中隨機抽取2人,利用列舉法能求出這2人恰好為1名男生、1名女生的概率.

解答 解:(Ⅰ)根據(jù)題目中的數(shù)據(jù),填寫列聯(lián)表如下:

平均車速超過100km/h人數(shù)平均車速不超過100km/h人數(shù)合計
男性駕駛員人數(shù)451055
女性駕駛員人數(shù)252045
合計7030100
因為,K2=$\frac{100(45×20-10×25)^{2}}{55×45×70×30}$=8.13>7.879,
所以有99.5%的把握認為平均車速超過100km/h與性別有關.
(Ⅱ)由題意抽取6人中,女性4人,男性2人,分別設為a1,a2,a3,a4和b1,b2,
從這6人中隨機抽取2人得樣本空間:
(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),
(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),
樣本空間數(shù)是15,
其中這2人恰好為1名男生、1名女生的樣本數(shù)是8,
因此這2人恰好為1名男生、1名女生的概率是p=$\frac{8}{15}$.

點評 本題考查獨立檢驗的應用,考查等可能事件的概率計算,涉及排列、組合的運用,考查推理論證能力、運算求解能力,考查化歸與轉化思想,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.全集U={1,2,3,4,5,6},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},則集合∁U(A∪B)的子集個數(shù)為( 。
A.1B.3C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.隨著社會發(fā)展,襄陽市在一天的上下班時段也出現(xiàn)了堵車嚴重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴重擁堵.早高峰時段(T≥3 ),從襄陽市交通指揮中心隨機選取了一至四馬路之間50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(I)據(jù)此直方圖估算交通指數(shù)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個路段至少有2個嚴重擁堵的概率是多少?
(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴重擁堵為60分鐘,求此人用時間的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.將函數(shù)$y=sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{1}{6}$個周期后,所得圖象對應的函數(shù)g(x)的一個單調增區(qū)間為(  )
A.[0,π]B.$[{-\frac{π}{2},0}]$C.$[{0,\frac{π}{2}}]$D.[-π,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=|sinx|(x≥0)的圖象與過原點的直線恰有三個交點,設三個交點中橫坐標的最大值為θ,則$\frac{{(1+{θ^2})sin2θ}}{θ}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a,b>0)$,過x軸上點P的直線與雙曲線的右支交于M,N兩點(M在第一象限),直線MO交雙曲線左支于點Q(O為坐標原點),連接QN.若∠MPO=60°,∠MNQ=30°,則該雙曲線的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}滿足:a1=1,nan+1-(n+1)an=1(n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若${b_n}=\frac{{{a_n}+1}}{2}•{(\frac{8}{9})^n}(n∈{N_+})$,求數(shù)列{bn}的最大項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若變量x,y滿足條件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-1≥0\end{array}\right.$,則xy的取值范圍是(  )
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[0,9]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若x6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,則a2=$\frac{15}{64}$.

查看答案和解析>>

同步練習冊答案