【題目】已知函數(shù) (x>0),設(shè)fn(x)為fn-1(x)的導(dǎo)數(shù),n∈N*.

(1)求的值;

(2)證明:對任意的n∈N*,等式都成立.

【答案】(1);(2)見解析

【解析】試題分析:(1)根據(jù)條件和結(jié)論先將原函數(shù)化為: 然后兩邊求導(dǎo)后根據(jù)條件兩邊再求導(dǎo)得: ,把 代入式子求值;
(2)由(1)得, ,利用相同的方法再對所得的式子兩邊再求導(dǎo),并利用誘導(dǎo)公式對所得式子進行化簡、歸納,再進行猜想得到等式,用數(shù)學(xué)歸納法進行證明等式成立.

試題解析:(1)解 由已知,得f1(x)=f0(x)=′=,于是f2(x)=f1(x)=′-′=-,所以f1=-,f2=-,

故2f1f2=-1.

(2)證明 由已知,得xf0(x)=sin x,等式兩邊分別對x求導(dǎo),得f0(x)+xf0(x)=cos x,即f0(x)+xf1(x)=cos x=sin,類似可得

2f1(x)+xf2(x)=-sin x=sin(x+π),

3f2(x)+xf3(x)=-cos x=sin,

4f3(x)+xf4(x)=sin x=sin.

下面用數(shù)學(xué)歸納法證明等式nfn-1(x)+xfn(x)

=sin對所有的n∈N*都成立.

(ⅰ)當(dāng)n=1時,由上可知等式成立.

(ⅱ)假設(shè)當(dāng)nk時等式成立,

kfk-1(x)+xfk(x)=sin.

因為[kfk-1(x)+xfk(x)]′=kfk-1(x)+fk(x)+xfk(x)=(k+1)fk(x)+xfk+1(x),

′=cos·′=sin

所以(k+1)fk(x)+xfk+1(x)=sin.

因此當(dāng)nk+1時,等式也成立.

綜合(ⅰ),(ⅱ)可知等式nfn-1(x)+xfn(x)

=sin對所有的n∈N*都成立.

x,可得nfn-1fn

=sin (n∈N*).

所以 (n∈N*).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,拋物線的準線被橢圓截得的線段長為

(1)求橢圓的方程;

(2)如圖,點分別是橢圓的左頂點、左焦點直線與橢圓交于不同的兩點都在軸上方).且.證明:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)處取得極值,求的值;

(2)設(shè),試討論函數(shù)的單調(diào)性;

(3)當(dāng)時,若存在正實數(shù)滿足,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)n∈N*,f(n)=3n+7n-2.

(1)求f(1),f(2),f(3)的值;

(2)證明:對任意正整數(shù)n,f(n)是8的倍數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且,數(shù)列滿足,且.

1)求數(shù)列的通項公式;

2)若,數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正四棱錐中,底邊,側(cè)棱, 為側(cè)棱上的點.

(1)若平面,求二面角的余弦值的大;

(2)若,側(cè)棱上是否存在一點,使得平面,若存在,求的值;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運動員每次投籃命中的概率都為50%,現(xiàn)采用隨機模擬的方法估計該運動員四次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定0,1,2,3,4表示命中,5,6,7,8 9表示不命中;再以每四個隨機數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):9075 9660 1918 9257 2716 9325 8121 4589 5690 6832 4315 2573 3937 9279 5563 4882 7358 1135 1587 4989

據(jù)此估計,該運動員四次投籃恰有兩次命中的概率為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面圖形很多可以推廣到空間中去,例如正三角形可以推廣到正四面體,圓可以推廣到球,平行四邊形可以推廣到平行六面體,直角三角形也可以推廣到直角四面體,如果四面體中棱兩兩垂直,那么稱四面體為直角四面體. 請類比直角三角形中的性質(zhì)給出2個直角四面體中的性質(zhì),并給出證明.(請在結(jié)論中選擇1個,結(jié)論4,5中選擇1個,寫出它們在直角四面體中的類似結(jié)論,并給出證明,多選不得分,其中表示斜邊上的高,分別表示內(nèi)切圓與外接圓的半徑)

直角三角形

直角四面體

條件

結(jié)論1

結(jié)論2

結(jié)論3

結(jié)論4

結(jié)論5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)已知集合A={x|-2<x<0},B={x|y=}

(1)求(RA)∩B;

(2)若集合C={x|a<x<2a+1}且CA,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案