【題目】已知函數(shù).其中

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若對(duì)于任意,都有恒成立,求的取值范圍.

【答案】(1)見解析;(2).

【解析】試題分析:求出,令其為,則,由此利用導(dǎo)數(shù)性質(zhì)能求出函數(shù)的單調(diào)區(qū)間;

,求導(dǎo),分類討論,,和三種情況,求出的取值范圍

解析:(1),令其為,則所以可得單調(diào)遞增,

,則在區(qū)間上,,函數(shù)單調(diào)遞減;在區(qū)間,函數(shù)單調(diào)遞增.

(2),另,可知,

,令,

當(dāng)時(shí),結(jié)合對(duì)應(yīng)二次函數(shù)的圖像可知,,即,所以函數(shù)單調(diào)遞減,時(shí),,時(shí),,

可知此時(shí)滿足條件.

當(dāng)時(shí),結(jié)合對(duì)應(yīng)二次函數(shù)的圖像可知,可知,單調(diào)遞增,時(shí),,時(shí),,,可知此時(shí)不成立.

當(dāng)時(shí),研究函數(shù),可知,對(duì)稱軸,

那么在區(qū)間大于0,即在區(qū)間大于0,在區(qū)間單調(diào)遞增,,可知此時(shí),所以不滿足條件.

綜上所述:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱臺(tái)被過點(diǎn)的平面截去一部分后得到如圖所示的幾何體,其下底面四邊形是邊長(zhǎng)為2的菱形,,平面.

(Ⅰ)求證:平面平面;

(Ⅱ)若與底面所成角的正切值為2,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;

)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓)的左、右焦點(diǎn)分別為,過作垂直于軸的直線與橢圓在第一象限交于點(diǎn),若,且.

(Ⅰ)求橢圓的方程;

(Ⅱ)是橢圓上位于直線兩側(cè)的兩點(diǎn).若直線過點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某小店每天以每份5元的價(jià)格從食品廠購(gòu)進(jìn)若干份食品,然后以每份10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的食品還可以每份1元的價(jià)格退回食品廠處理.

(Ⅰ)若小店一天購(gòu)進(jìn)16份,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;

(Ⅱ)小店記錄了100天這種食品的日需求量(單位:份),整理得下表:

日需求量

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率.

(i)小店一天購(gòu)進(jìn)16份這種食品,表示當(dāng)天的利潤(rùn)(單位:元),求的分布列及數(shù)學(xué)期望;

(ii)以小店當(dāng)天利潤(rùn)的期望值為決策依據(jù),你認(rèn)為一天應(yīng)購(gòu)進(jìn)食品16份還是17份?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+1(a>0,b∈R)有極值,且導(dǎo)函數(shù)f'(x)的極值點(diǎn)是f(x)的零點(diǎn).(極值點(diǎn)是指函數(shù)取極值時(shí)對(duì)應(yīng)的自變量的值)

(1)b關(guān)于a的函數(shù)關(guān)系式,并寫出定義域;

(2)證明:b2>3a;

(3)f(x),f'(x)這兩個(gè)函數(shù)的所有極值之和不小于-,a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適當(dāng)疏導(dǎo)電價(jià)矛盾,保障電力供應(yīng),支持可再生能源發(fā)展,促進(jìn)節(jié)能減排,安徽省于2012年推出了省內(nèi)居民階梯電價(jià)的計(jì)算標(biāo)準(zhǔn):以一個(gè)年度為計(jì)費(fèi)周期、月度滾動(dòng)使用,第一階梯電量:年用電量2160度以下(含2160度),執(zhí)行第一檔電價(jià)0.5653元/度;第二階梯電量:年用電量2161至4200度(含4200度),執(zhí)行第二檔電價(jià)0.6153元/度;第三階梯電量:年用電量4200度以上,執(zhí)行第三檔電價(jià)0.8653元/度.

某市的電力部門從本市的用電戶中隨機(jī)抽取10戶,統(tǒng)計(jì)其同一年度的用電情況,列表如下表:

用戶編號(hào)

1

2

3

4

5

6

7

8

9

10

年用電量(度)

1000

1260

1400

1824

2180

2423

2815

3325

4411

4600

(Ⅰ)試計(jì)算表中編號(hào)為10的用電戶本年度應(yīng)交電費(fèi)多少元?

(Ⅱ)現(xiàn)要在這10戶家庭中任意選取4戶,對(duì)其用電情況作進(jìn)一步分析,求取到第二階梯電量的戶數(shù)的分布列與期望;

(Ⅲ)以表中抽到的10戶作為樣本估計(jì)全市的居民用電情況,現(xiàn)從全市居民用電戶中隨機(jī)地抽取10戶,若抽到戶用電量為第一階梯的可能性最大,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,已知四棱錐的底面為菱形,且, .

I)求證:平面 平面;

II)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)統(tǒng)計(jì)2018年春節(jié)期間微信紅包收發(fā)總量達(dá)到460億個(gè)。收發(fā)紅包成了生活的調(diào)味劑。某網(wǎng)絡(luò)運(yùn)營(yíng)商對(duì)甲、乙兩個(gè)品牌各5種型號(hào)的手機(jī)在相同環(huán)境下,對(duì)它們搶到的紅包個(gè)數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

型號(hào)

手機(jī)品牌

甲品牌(個(gè))

4

3

8

6

12

乙品牌(個(gè))

5

7

9

4

3

Ⅰ)如果搶到紅包個(gè)數(shù)超過5個(gè)的手機(jī)型號(hào)為優(yōu),否則非優(yōu),請(qǐng)據(jù)此判斷是否有85%的把握認(rèn)為搶到的紅包個(gè)數(shù)與手機(jī)品牌有關(guān)?

Ⅱ)如果不考慮其它因素,要從甲品牌的5種型號(hào)中選出2種型號(hào)的手機(jī)進(jìn)行大規(guī)模宣傳銷售.求型號(hào)Ⅰ或型號(hào)Ⅱ被選中的概率.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:

查看答案和解析>>

同步練習(xí)冊(cè)答案