20.在數(shù)列{an}中,a1=1,an+1=an+1,Sn為{an}的前n項(xiàng)和,若Sn=21,則n=6.

分析 由已知得數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,由此求出Sn=$\frac{n(n+1)}{2}$,再由Sn=21,能求出n.

解答 解:數(shù)列{an}中,∵a1=1,an+1=an+1,
∴數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列,
∴Sn=n+$\frac{n(n-1)}{2}×1$=$\frac{n(n+1)}{2}$,
∵Sn=21,∴$\frac{n(n+1)}{2}$=21,
解得n=6.
故答案為:6.

點(diǎn)評(píng) 本題考查等差數(shù)列中項(xiàng)數(shù)n的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,A,B,C的對(duì)邊分別是a,b,c,且2acosB=2c-b.
(Ⅰ)求A的大小;
(Ⅱ)若a=2,b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=$\frac{3}{2}$an-1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=2log3$\frac{{a}_{n}}{2}$+1,求$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{b{{\;}_{n-1}b}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,∠C=60°,AC=2,BC=3,那么AB等于( 。
A.$\sqrt{5}$B.$\sqrt{6}$C.$\sqrt{7}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,直線l的方程為x+y-8=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=cosα\\ y=\sqrt{3}sinα\end{array}\right.(α為參數(shù))$.
(1)已知極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,若點(diǎn)P的極坐標(biāo)為$(4\sqrt{2},\frac{π}{4})$,請(qǐng)判斷點(diǎn)P與曲線C的位置關(guān)系;
(2)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最小值與最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列函數(shù)為奇函數(shù)的是( 。
A.y=x3+3x2B.y=$\frac{{e}^{x}+{e}^{-x}}{2}$C.y=xsinxD.y=log2$\frac{3-x}{3+x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若f(x)=x3-3x+m有且只有一個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,$\overrightarrowyspxp55$及實(shí)數(shù)x,y滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{c}$=$\overrightarrow{a}$+(x2-3)$\overrightarrow$,$\overrightarrowhr6wtv6$=-y•$\overrightarrow{a}$+x•$\overrightarrow$,若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow{c}$⊥$\overrightarrowj0fwtlx$,且|$\overrightarrow{c}$|≤$\sqrt{10}$.
(1)求y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x)及其定義域;
(2)若當(dāng)x∈(1,$\sqrt{6}$)時(shí),不等式f(x)≥mx+16恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=cos(2x-$\frac{π}{6}$)-$\sqrt{3}$cos2x.
(1)求函數(shù)f(x)的最小值,并求函數(shù)f(x)取得最小值時(shí)x值的集合;
(2)若f($\frac{1}{2}$α+$\frac{π}{6}$)=$\frac{3}{5}$,且α∈($\frac{π}{2}$,π),求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案