已知兩條直線m,n,兩個平面α,β,給出下面四個命題:
①m∥n,m⊥α⇒n⊥α
②α∥β,m?α,n?β⇒m∥n
③m∥n,m∥α⇒n∥α
④α∥β,m∥n,m⊥α⇒n⊥β
其中正確命題的序號是( )
A.①③
B.②④
C.①④
D.②③
【答案】分析:由題意用線面垂直和面面平行的定理,判斷線面和面面平行和垂直的關系.
解答:解:用線面垂直和面面平行的定理可判斷①④正確;
②中,由面面平行的定義,m,n可以平行或異面;
③中,用線面平行的判定定理知,n可以在α內(nèi);
故選C.
點評:本題考查了線面垂直和面面平行的定理,及線面、面面位置關系的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

13、已知兩條直線m,n,兩個平面α,β,給出下面四個命題:
①m∥n,m⊥α?n⊥α;②α∥β,m?α,n?β?m∥n;
③m∥n,m∥α?n∥α;④α∥β,m∥n,m⊥α?n⊥β.
其中正確命題的序號是
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩條直線m,n和兩個平面α,β,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩條直線m,n,兩個平面α,β,給出下面四個命題:
①m∥n,m⊥α⇒n⊥α;
②α∥β,m?α,n?β⇒m∥n;
③m∥n,m∥α⇒n∥α;
④α∥β,m∥n,m⊥α⇒n⊥β;
其中真命題的序號
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•棗莊一模)已知兩條直線m,n,兩個平面α,β,給出4個命題:
①若m⊥α,m?β,則β⊥α;
②若α∥β,m∥n,m⊥α,則n⊥β;
③若α∩β=n,且m∥α,m∥β,則m∥n;
④若m∥α,n∥β,m⊥n,則α∥β.
其中正確命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩條直線m、n與兩個平面α、β,下列命題正確的是( 。

查看答案和解析>>

同步練習冊答案