【題目】已知函數(shù)()
(1)若是的極值,求的值,并求的單調(diào)區(qū)間。
(2)若時,,求實數(shù)的取值范圍。
【答案】(1),的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)
【解析】
(1)計算的導函數(shù),結合極值,計算a,結合導函數(shù)與原函數(shù)單調(diào)關系,計算單調(diào)區(qū)間,即可。(2)法一:計算導函數(shù),構造函數(shù),結合導函數(shù),得到的單調(diào)區(qū)間,計算范圍,即可。法二 :構造函數(shù),結合導函數(shù),得到原函數(shù)單調(diào)性,計算,得到a的范圍,即可。
(1)的定義域是,,
由是的極值得,得.
時,由,得,
列表(列表的功能有兩個:一是檢驗的正確性;二是求單調(diào)區(qū)間)得
負 | 0 | 正 | |
單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
綜上,,的單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.
(2)法一:因,.
記,
則,且,當,
即時,,在單調(diào)遞增,
故時,,則,
則在單調(diào)遞增,,符合。
當,即時,則存在,使得時,,
此時,,在單調(diào)遞減,時,,不符。
綜上,實數(shù)的取值范圍是.
法二:時,,等價于,
記,
則,
記,
則,
故,在單調(diào)遞減,
由洛必達法則得,
故,綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】某年級組織學生參加了某項學術能力測試,為了解參加測試學生的成績情況,從中隨機抽取20名學生的測試成績作為樣本,規(guī)定成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀.統(tǒng)計結果如圖:
(1)求的值和樣本的平均數(shù);
(2)從該樣本成績優(yōu)秀的學生中任選兩名,求這兩名學生的成績至少有一個落在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形.謝爾賓斯基三角形是一種分形,由波蘭數(shù)學家謝爾賓斯基1915年提出.具體操作是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,如圖.
現(xiàn)在上述圖(3)中隨機選取一個點,則此點取自陰影部分的概率為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50位學生周考數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:、、、、、.
(1)求圖中的矩形高的值,并估計這50人周考數(shù)學的平均成績;
(2)根據(jù)直方圖求出這50人成績的眾數(shù)和中位數(shù)(精確到0.1);
(3)從成績不低于80分的學生中隨機選取2人,該2人中成績不低于90分的人數(shù)記為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),R.
(1)試討論函數(shù)的極值點的個數(shù);
(2)若N*,且恒成立,求的最大值.
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩名老師和五名學生站一排拍照.
(1)五名學生必須排在一起共有多少種排法?
(2)兩名老師不能相鄰共有多少種排法?
(3)兩名老師不能排在兩邊共有多少種排法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為.
(1)求曲線的普通方程,曲線的參數(shù)方程;
(2)若分別為曲線,上的動點,求的最小值,并求取得最小值時,點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是放置在桌面的某三棱柱的三視圖,其中網(wǎng)格小正方形邊長為1.若三棱柱表面上的、兩點在三視圖中的對應點為、,現(xiàn)一只螞蟻要沿該三棱柱的表面(不包括下底面)從爬到,則所有路徑里最短路徑的長度為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com