7.已知空間中的直線m、n和平面α,且m⊥α.則“m⊥n”是“n?α”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 m⊥α,n?α⇒m⊥n,反之不成立,可能n∥α.即可判斷出結論.

解答 解:∵m⊥α,n?α⇒m⊥n,反之不成立,可能n∥α.
∴“m⊥n”是“n?α”成立的必要不充分條件.
故選:B.

點評 本題考查了空間線面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)在定義域R上單調(diào)遞減,且函數(shù)y=f(x-1)的圖象關于點A(1,0)對稱.若實數(shù)t滿足f(t2-2t)+f(-3)>0,則$\frac{t-1}{t-3}$的取值范圍是 ( 。
A.($\frac{1}{2}$,+∞)B.(-∞,$\frac{1}{2}$)C.(0,$\frac{2}{3}$)D.($\frac{1}{2}$,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.如圖是甲,乙兩名同學5次綜合測評成績的莖葉圖,甲乙兩人中成績較為穩(wěn)定的是甲

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知集合A={x||x-2|<3,x∈Z},B={0,1,2},則集合A∩B=( 。
A.{0,1,2}B.{0,1,2,3}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則所得的兩個點數(shù)和不小于10的概率為(  )
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{2}{9}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖,在三棱錐P-ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC內(nèi),∠OPC=45°,∠OPA=60°,則∠OPB的余弦值為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{6}}{3}$C.$\frac{1}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=-sin2x+sinx+a,
(1)當f(x)=0有實數(shù)解時,求a的取值范圍;
(2)若$x∈[\frac{π}{6},\frac{2π}{3}]$,恒有1≤f(x)≤$\frac{17}{4}$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設A為圓(x-1)2+y2=1上的動點,PA是圓的切線,且|PA|=1,則點P的軌跡方程是( 。
A.(x-1)2+y2=2B.(x-1)2+y2=4C.y2=2xD.y2=-2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設函數(shù)$f(x)=\left\{\begin{array}{l}{log}_{\frac{1}{2}}^{(-x)},x<0\\{log}_{2}^{x},x>0\end{array}\right.$,若f(a)>f(-a),則a的范圍為( 。
A.(-1,0)∪(0,1)B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-∞,-1)∪(0,1)

查看答案和解析>>

同步練習冊答案