2.將一顆骰子先后拋擲2次,觀察向上的點數(shù),則所得的兩個點數(shù)和不小于10的概率為( 。
A.$\frac{1}{3}$B.$\frac{5}{18}$C.$\frac{2}{9}$D.$\frac{1}{6}$

分析 先求出基本事件總數(shù)n=6×6=36,再利用列舉法求出所得的兩個點數(shù)和不小于10包含的基本事件個數(shù),由此能求出所得的兩個點數(shù)和不小于10的概率.

解答 解:將一顆骰子先后拋擲2次,觀察向上的點數(shù),
基本事件總數(shù)n=6×6=36,
則所得的兩個點數(shù)和不小于10包含的基本事件有:
(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6個,
∴所得的兩個點數(shù)和不小于10的概率為p=$\frac{6}{36}=\frac{1}{6}$.
故選:D.

點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.求滿足下列條件的曲線方程:
(1)經過兩條直線2x+y-8=0和x-2y+1=0的交點,且垂直于直線6x-8y+3=0的直線
(2)經過點C(-1,1)和D(1,3),圓心在x軸上的圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a+\overrightarrow b}|=\sqrt{7}$,$|{\overrightarrow a-\overrightarrow b}|=\sqrt{3}$,則$\overrightarrow a•\overrightarrow b$的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.從500件產品中隨機抽取20件進行抽樣,利用隨機數(shù)表法抽取樣本時,先將這500件產品按001,002,003,…,500進行編號,如果從隨機數(shù)表的第1行第6列開始,從左往右依次選取三個數(shù)字,則選出來的第4個個體編號為( 。
1622  7794  3949  5443  5482  1737  9323  7887  3520  9643
8626  3491  6484  4217  5331  5724  5506  8877  0474  4767.
A.435B.482C.173D.237

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在四棱錐P-ABCD中,PB⊥底面ABCD,底面ABCD為梯形,AD∥BC,AD⊥AB,且PB=AB=AD=3,BC=1.
(Ⅰ)若點F為PD上一點且PF=$\frac{1}{3}$PD,證明:CF∥平面PAB;
(Ⅱ)求二面角B-PD-A的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知空間中的直線m、n和平面α,且m⊥α.則“m⊥n”是“n?α”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2$\sqrt{3}$,PD=CD=2,則二面角A-PB-C的正切值為$\frac{\sqrt{15}}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,滿足(2b-c)cos A-acos C=0.
(1)求角A的大;
(2)若a=$\sqrt{3}$,試求當△ABC的面積取最大值時,△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合M={0,1,2,3,4},N={1,3,5}且P=M∪N,則P的元素有( 。﹤.
A.2B.4C.6D.8

查看答案和解析>>

同步練習冊答案