【題目】已知函數(shù)(其中),,已知和在處有相同的切線.
(1)求函數(shù)和的解析式;
(2)求函數(shù)在區(qū)間上的最大值和最小值;
(3)判斷函數(shù)的零點個數(shù),并說明理由.
【答案】(1);(2)最大值,最小值為;(3)一個,理由見解析.
【解析】
(1)利用導數(shù)運算性質(zhì)可得,根據(jù)和在處有相同的切線.可得及,聯(lián)立解得.
(2)利用導數(shù)研究單調(diào)性后可得極值,再求出區(qū)間端點函數(shù)值即可得出所求的最值.
(3)利用導數(shù)研究函數(shù)的單調(diào)性極值,再結(jié)合零點存在定理可得出函數(shù)的零點個數(shù).
(1)(其中),,
.
,.
和在處有相同的切線.
,解得.
,
(2),.
可得在上單調(diào)遞減,在上單調(diào)遞增.
時,函數(shù)取得極小值即最小值,.
又.
∴時,函數(shù)取得最大值,.
綜上可得:函數(shù)在區(qū)間上的最大值和最小值分別為:.
(3)函數(shù).
.
當時,,故在為增函數(shù);
當時,,故在為減函數(shù);
當時,,故在為增函數(shù);
,,
而,
故在有且只有一個零點,在上無零點,
綜上,有一個零點.
科目:高中數(shù)學 來源: 題型:
【題目】已知動點M到定點F1(-2,0)和F2(2,0)的距離之和為.
(1)求動點M軌跡C的方程;
(2)設N(0,2),過點P(-1,-2)作直線l,交橢圓C于不同于N的A,B兩點,直線NA,NB的斜率分別為k1,k2,問k1+k2是否為定值?若是的求出這個值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過拋物線的一條弦的中點作平行于拋物線對稱軸的平行線(或與對稱軸重合),交拋物線于一點,稱以該點及弦的端點為頂點的三角形為這條弦的阿基米德三角形(簡稱阿氏三角形).
現(xiàn)有拋物線:,直線:(其中,,是常數(shù),且),直線交拋物線于,兩點,設弦的阿氏三角形是.
(1)指出拋物線的焦點坐標和準線方程;
(2)求的面積(用,,表示);
(3)稱的阿氏為一階的;、的阿氏、為二階的;、、、的阿氏三角形為三階的;……,由此進行下去,記所有的階阿氏三角形的面積之和為,探索與之間的關系,并求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=,O是AC的中點,E是BD的中點.
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)已知是直線上的動點,點的坐標是,過的直線與垂直,并且與線段的垂直平分線相交于點 .
(1)求點的軌跡的方程;
(2)設曲線上的動點關于軸的對稱點為,點的坐標為,直線與曲線的另一個交點為(與不重合),是否存在一個定點,使得三點共線?若存在,求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是由非負整數(shù)組成的無窮數(shù)列,對每一個正整數(shù),該數(shù)列前項的最大值記為,第項之后各項的最小值記為,記.
(1)若數(shù)列的通項公式為,求數(shù)列的通項公式;
(2)證明:“數(shù)列單調(diào)遞增”是“”的充要條件;
(3)若對任意恒成立,證明:數(shù)列的通項公式為.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的離心率,左焦點為,右頂點為,過點的直線交橢圓于兩點,若直線垂直于軸時,有.
(1)求橢圓的方程;
(2)設直線: 上兩點, 關于軸對稱,直線與橢圓相交于點(異于點),直線與軸相交于點.若的面積為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com