已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設(shè)點M(m,0)在橢圓C的長軸上,設(shè)點P是橢圓上的任意一點,若當(dāng)最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
(1)(2)
【解析】
試題分析:
(1)根據(jù)橢圓的中心在原點可以設(shè)出橢圓的標(biāo)準(zhǔn)方程,已知焦點坐標(biāo),故可求的c值,所以利用長軸長與短軸長之比和a,b,c的關(guān)系可以建立關(guān)于a,b的兩個方程式聯(lián)立消元即可求的a,b的值,得到橢圓的標(biāo)準(zhǔn)方差.(2)根據(jù)題意設(shè)點P的坐標(biāo),表示,利用點P在橢圓上,得到關(guān)于m和P點橫坐標(biāo)的表達式,利用二次函數(shù)最值問題,可以得到取得最小值時,m和P點橫坐標(biāo)之間的關(guān)系,再利用P橫坐標(biāo)的范圍得到m的取值范圍即可.
試題解析:
(1)設(shè)橢圓的方程為. 1分
由題意有:, 3分
解得. 5分
故橢圓的方程為. 6分
(2)設(shè)為橢圓上的動點,由于橢圓方程為,故. 7分
因為,所以
10分
因為當(dāng)最小時,點恰好落在橢圓的右頂點,即當(dāng)時,
取得最小值.而,
故有,解得. 12分
又點在橢圓的長軸上,即. 13分
故實數(shù)的取值范圍是. 14分
考點:橢圓標(biāo)準(zhǔn)方程橢圓幾何性質(zhì)最值
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測試二理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知向量,,則的充要條件是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省汕頭市高三3月高考模擬考試文科試卷(解析版) 題型:選擇題
如圖,一個空間幾何體的正視圖、側(cè)視圖都是面積為,且一個內(nèi)角為的菱形,俯視圖為正方形,那么這個幾何體的表面積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省梅州市高三3月總復(fù)習(xí)質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:填空題
(2x-1)5的展開式x3項的系數(shù)是__________.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省梅州市高三3月總復(fù)習(xí)質(zhì)檢理科數(shù)學(xué)試卷(解析版) 題型:選擇題
下列命題中的假命題是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省梅州市高三3月總復(fù)習(xí)質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:填空題
(坐標(biāo)系與參數(shù)方程選講選做題)在平面直角坐標(biāo)系下xoy中,直線l的參數(shù)方程是(參數(shù)tR).圓的參數(shù)方程為(參數(shù)),則圓C的圓心到直線l的距離為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省梅州市高三3月總復(fù)習(xí)質(zhì)檢文科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)m,n是平面內(nèi)的兩條不同直線,l是平面外的一條直線,則且是的( )
A.充分而不必要條件 B.必要而不充分條件 C.充要條件 D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三4月第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
過點作圓的弦,其中最短的弦長為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省揭陽市高三3月第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知首項為正數(shù)的等差數(shù)列中,.則當(dāng)取最大值時,數(shù)列的公差
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com