7.已知M為拋物線y2=4x上一動(dòng)點(diǎn),F(xiàn)為這條拋物線的焦點(diǎn),有一個(gè)定點(diǎn)A(3,2),則|MA|+|MF|的最小值=4.

分析 設(shè)點(diǎn)M在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|MF|=|MD|進(jìn)而把問題轉(zhuǎn)化為求|MA|+|MD|取得最小,進(jìn)而可推斷出當(dāng)D,M,A三點(diǎn)共線時(shí)|MA|+|MD|最小,答案可得.

解答 解:設(shè)點(diǎn)M在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知|MF|=|MD|,
∴要求|MA|+|MF|取得最小值,即求|MA|+|MD|取得最小,
當(dāng)D,M,A三點(diǎn)共線時(shí)|MA|+|MD|最小,為3-(-1)=4.
故答案為:4.

點(diǎn)評(píng) 本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡單性質(zhì)的應(yīng)用,判斷當(dāng)D,M,A三點(diǎn)共線時(shí)|MA|+|MD|最小是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知3$\overrightarrow{a}$-2$\overrightarrow$=(-2,0,4),$\overrightarrow{c}$=(-2,1,2),$\overrightarrow{a}$•$\overrightarrow{c}$=2,且|$\overrightarrow$|=4.
(1)求cos<$\overrightarrow$,$\overrightarrow{c}$>;
(2)記$\overrightarrowdneyg8q$=(-2,0,4),確定實(shí)數(shù)k,使得($\overrightarrowzogxz9t$+k$\overrightarrow{c}$)與($\overrightarrownnswusd$-2$\overrightarrow{c}$)互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|y=log2(4-x2)},B={y|y=2x+1},則A∩B=( 。
A.B.(1,3)C.(1,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知命題p:?m∈R,使得函數(shù)f(x)=x2+(m-1)x2-2是奇函數(shù),命題q:向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),則“$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$”是:“$\overrightarrow{a}$$∥\overrightarrow$”的充要條件,則下列命題為真命題的是( 。
A.p∧qB.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)M是圓P:(x+5)2+y2=36上一動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(5,0),若線段MQ的垂直平分線交直線PM于點(diǎn)N,則點(diǎn)N的軌跡方程為( 。
A.$\frac{x^2}{25}+\frac{y^2}{9}=1$B.$\frac{x^2}{16}+\frac{y^2}{9}=1$C.$\frac{x^2}{25}-\frac{y^2}{9}=1$D.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{16}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=sinxcosx-cos2x.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間$[\frac{π}{8},\frac{3π}{4}]$上的最小值,并求取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.復(fù)數(shù)i-i2在復(fù)平面內(nèi)表示的點(diǎn)在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.f(x)=cosx+sinx的最大值為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.李師傅在建材商店購買了三根外圍直徑都為10cm的鋼管,為了便于攜帶,他將三根鋼管用鐵絲緊緊捆住,截面如圖所示,則鐵絲捆扎一圈的長度為30+10πcm.

查看答案和解析>>

同步練習(xí)冊(cè)答案