解關(guān)于x的方程:6x+2×4x=9x
考點(diǎn):函數(shù)的零點(diǎn)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由32x-2x•3x+2•22x=0,得(3x-2•2x)(3x+2x)=0,從而3x=2•2x,解出即可.
解答: 解:∵6x+2×4x=9x,
∴32x-2x•3x-2•22x=0,
令3x=a,2x=b,(a>0,b>0),
則a2-ab-2b2=0,
∴(a-2b)(a+b)=0,
∴a=2b,
∴3x=2•2x,
(
3
2
)
x
=2,
∴x=
log
2
3
2
=
1
log
3
2
-1
點(diǎn)評(píng):本題考查了解方程問(wèn)題,考查指數(shù),對(duì)數(shù)的互換,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知[-1,1]⊆{x||x2-tx|≤1},則實(shí)數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)對(duì)任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0時(shí),f(x)>0,f(1)=1.
(1)求f(0)的值;
(2)求證:f(x)為奇函數(shù);
(3)判斷f(x)的單調(diào)性,并證明;
(4)當(dāng)-3≤x≤3時(shí),求f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=|x-2|+3的圖象的對(duì)稱軸為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知AC=1,∠BAC=60°,S△ABC=
3

(1)求sin∠ACB的值;
(2)記BC邊上的中線為AD,求AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={a,b,c},B={-1,0,1},若從A到B的映射f滿足:f(a)×f(b)=f(c),則這樣的映射有( 。﹤(gè).
A、27B、9C、8D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2-4|x|-3=m有四個(gè)解的m的取值范圍是( 。
A、(-7,-3)
B、(0,7)
C、[0,7)
D、[-7,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-ax+a2-19=0},B={x|x2-5x+8=2},C={x|x2+2x-8=0},若∅?(A∩B),且A∩C=∅,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

y=sin(2x-
π
3
)-sin2x的一個(gè)單調(diào)遞增區(qū)間是( 。
A、[-
π
6
,
π
3
]
B、[
π
12
,
7
12
π]
C、[
5
12
π,
13
12
π]
D、[
π
3
,
6
]

查看答案和解析>>

同步練習(xí)冊(cè)答案