10.在等差數(shù)列{an}中,a2=4,a4=2,則a8=(  )
A.-1B.-2C.4D.8

分析 直接利用等差數(shù)列的性質(zhì)求解即可.

解答 解:在等差數(shù)列{an}中,a2=4,a4=2,則d=-1,a8=a2+6d,
a8=-2.
故選:B.

點(diǎn)評 本題考查等差數(shù)列的簡單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列五個命題:
①直線l的斜率k∈[-1,1],則直線l的傾斜角的范圍是$α∈[{-\frac{π}{4},\frac{π}{4}}]$;
②直線l:y=kx+1與過A(-1,5),B(4,-2)兩點(diǎn)的線段相交,則k≤-4或$k≥-\frac{3}{4}$;
③如果實(shí)數(shù)x,y滿足方程(x-2)2+y2=3,那么$\frac{y}{x}$的最大值為$\sqrt{3}$;
④直線y=kx+1與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共點(diǎn),則m的取值范圍是m≥1;
⑤方程x2+y2+4mx-2y+5m=0表示圓的充要條件是$m<\frac{1}{4}$或m>1;
正確的是(  )
A.②③B.③④C.②⑤D.②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an+n-3,n∈N*
(1)證明數(shù)列{an-1}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某縣二中有教職員工300人,不到35歲的有140人,35歲到50歲的有110人,剩下的為51歲以上的人,用分層抽樣的方法從中抽取30人,各年齡段分別抽取多少人( 。
A.13,11,6B.14,11,5C.15,11,4D.16,11,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)f(x)=$\left\{\begin{array}{l}{2,x∈(-∞,1]}\\{lo{g}_{81}x,x∈(1,+∞)}\end{array}\right.$,則滿足$f(x)=\frac{1}{4}$的x的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.關(guān)于x的不等式ax-b>0的解集是(-∞,1),則關(guān)于x的不等式$\frac{ax+b}{x-2}$≥0的解集為[-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:萬元)之間有如表所示的數(shù)據(jù)
x24568
y3040506070
(1)畫出散點(diǎn)圖; 
(2)$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{a=}\end{array}\right.$
(3)求y關(guān)于x的回歸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義:區(qū)間[x1,x2](x1<x2)的長度為x2-x1,已知函數(shù)y=|log0.5(x+1)|定義域?yàn)閇a,b],值域?yàn)閇0,2],則區(qū)間[a,b]的長度的最大值為$\frac{15}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則y=f(x)的圖象可由y=sin2x圖象( 。
A.向左平移$\frac{π}{6}$個長度單位得到B.向右平移$\frac{π}{6}$個長度單位得到
C.向右平移$\frac{π}{12}$個長度單位得到D.向左平移$\frac{π}{12}$個長度單位得到

查看答案和解析>>

同步練習(xí)冊答案