在△ABC中,a,b,c分別是∠A、∠B、∠C的對(duì)邊,a,b,c滿足b2=a2+c2-ac若b=2
3
,則△ABC面積的最大值為
 
考點(diǎn):余弦定理,正弦定理
專題:計(jì)算題,解三角形
分析:由b與cosB的值,利用余弦定理列出關(guān)系式,利用基本不等式變形求出ac的最大值,利用三角形的面積公式表示出三角形ABC的面積,將ac的最大值代入即可求出三角形ABC面積的最大值.
解答: 解:∵b2=a2+c2-ac,即a2+c2-b2=ac,
∴cosB=
a2+c2-b2
2ac
=
1
2

∵B為三角形的內(nèi)角,
∴B=
π
3
;sinB=
3
2

∵b=2
3
,cosB=
1
2
,
∴由余弦定理得:12=b2=a2+c2-ac≥ac,
∴S△ABC=
1
2
acsinB=
3
ac
4
≤3
3
,
則△ABC面積的最大值為3
3
點(diǎn)評(píng):此題考查了余弦定理,三角形的面積公式,基本不等式的運(yùn)用,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)方程|ax-1|=x的解集為A,若A?≠[0,2],則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cosx-cos(x+
π
2
),x∈R.
(1)若f(a)=
3
4
,求sin2a的值;
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
|x+1|+|x-2|+a

(1)當(dāng)a=-5時(shí),求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)的定義域?yàn)镽,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)圖象關(guān)于x=1對(duì)稱,且與x軸的兩個(gè)交點(diǎn)分別為(-1,0)、(3,0),求此二次函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C和y軸相切,圓心在直線x-3y=0上,且被直線y=x截得的弦長(zhǎng)為2
7

(1)求圓C的方程;  
(2)判斷圓C與圓M:(x-10)2+(y-10)2=1的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-2x-15≤0},B=(2,11],C=[p+1,2p-1],C≠∅.
(1)求A∪B,(∁RA)∩B.
(2)若C?(A∪B),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于滿足|a|≤1的所有實(shí)數(shù)a,求使不等式x2+2ax+1>a+x恒成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=lnx-x2+
1
2-x
在點(diǎn)M(1,0)處的切線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案